Масляный насос тягового трансформатора электровоза вл 80

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Таким образом, в многоосевом локомотиве поддерживается лишь несколько осей на дорожке с полным весом локомотива. Естественно, вам нужно полагаться на эти оси, чтобы получить ток, но оказывается, что если локоморы имеют адгезионные кольца, необходимо, чтобы эти кольца также находились на этих осях, которые приспосабливаются к дорожке с максимальным давлением. Поскольку кольца захвата предотвращают или, по крайней мере, затрудняют улавливание тока, возникает конфликт, который производители решают на основе распределения колес этих осей между теми, которые несут обручи и другие, которые их не носят.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

По предмету : Конструкция, техническое обслуживание и ремонт подвижного состава

НА ТЕМУ:

Назначение, устройство и ремонт тягового трансформатора ОДЦЭ-5000/25Б электровоза

Очевидно, что локомотивы, у которых нет адгезионных колец, не представляют этого конфликта, что значительно облегчает контакт с дорожкой. Это также одна из причин, побуждаемых теми, кто выступает за то, чтобы не устанавливать кольца сцепления на локомотивах.

Вторая проблема, которая влияет на контакт между колесом и рельсом, - это осажденная грязь, как на дорожках, так и на колесах. Эта грязь может исходить от самих поездов, если они слишком смазаны, как сами локомотивы, так и вагоны. Смазка всегда должна быть очень легкой и в очень специфических местах. Еще одна причина загрязнения заключается в том, что из пыли, которая осаждается на дорогах, а также из-за разрушения адгезионных колец, которые при использовании, особенно если есть масло на дороге, разрушается.

МИЧУРИНСК-20 1 6

1.Развитие железнодорожного транспорта в России

2. Тяговый трансформатор ОДЦЭ-5000/25Б 6

2.1 Назначение

2.2 Устройство

2.3 Работа

2.4 Ремонт

3.Техника безопасности

Литература

1. Развитие желез нодорожного транспорта в России

тяговый трансформатор ремонт электровоз

Все это приводит к необходимости чистки дорог, что может быть неприятной задачей. У всех производителей есть элемент очистки дорожек. Есть транспортные средства, которые несут обувь, которая протирает дорожки или даже диски или абразивные ролики, которые циркулируют вдоль дорожек. На предыдущих изображениях вы можете увидеть два чистящих вагона. Справа мы имеем самый простой элемент для очистки: блок из очень мягкого абразивного материала. Многие любители не доверяют любому типу абразивного элемента и предпочитают прибегать к жидким растворителям.

Одной из базисных отраслей российской экономики является железнодорожный транспорт. Эффективность работы этой отрасли влияет на темпы роста практически во всех отраслях российской экономики. Система железных дорог обеспечивает единство территории России, интенсивность хозяйственных связей в стране, является одним из факторов, определяющих объемы и направления нашей внешней торговли. Более 80 процентов грузооборота (без учета трубопроводного транспорта) приходится именно на железные дороги. От качества железнодорожного сообщения зависит плотность расселения граждан по территории Российской Федерации и мобильность трудовых ресурсов. Железные дороги берут на себя более 40 процентов всех пассажирских перевозок. Количество пассажиров, перевезенных по российским железным дорогам в 2011 году, составило 1 млрд. 352 млн. 800 тыс. (на 2,5% больше, чем в 2010 году), в том числе:

Изопропиловый спирт или изопропанол имеет хороший знак, но восстановление в труднодоступном состоянии. Есть некоторые коммерческие чистящие средства, которые несут его в своем составе, хотя, конечно, только в определенной пропорции. В рамках этой темы очистки дорог есть элемент, который обычно называют электронными стеклоочистителями, хотя название немного вводит в заблуждение, потому что то, что они на самом деле делают, заключается в обеспечении контакта между колесом и полосой движения, хотя есть определенная грязь на дороге, и держать дорогу чистой, так что чем больше поездов циркулирует, тем чище будет трек, что отводит необходимость ручной очистки в моменты, когда модель не использовала определенное время.

В поездах дальнего следования - 135 млн. 300 тыс. (рост - 0,9%);

В поездах пригородного сообщения - 1 млрд. 217 млн. 500 тыс. (рост - 2,7%).

Пассажирооборот составил 178 млрд. 260 млн. пассажиро-километров (рост - 4,3%), в том числе:

В дальнем следовании - 124 млрд. 940 млн. пассажиро-километров (рост - 5,0%);

В пригородном сообщении - 53 млрд. 320 млн. пассажиро-километров (рост - 2,6%).

Поэтому, когда оборудование выключено, ток достигает треков точно так, как если бы он не был. Очиститель подключен к источнику питания, который обеспечивает переменный ток 16 В, который используется для питания генератора волн, представленного здесь прямоугольником, из которого выходят синие проводники. Когда мы подаем этот генератор на 16 вольт, генератор генерирует переменное напряжение высокой частоты, которое выходит через синие проводники. Когда мы включаем стеклоочиститель, высокая частота подает синюю катушку трансформатора.

В зависимости от количества оборотов красной и синей катушек индуцированное напряжение будет выше или ниже. Рассмотрим теперь три возможные ситуации. Все напряжение, создаваемое схемой генератора, появляется на концах синей обмотки и после преобразования в соответствии с отношением витков появляется красный контур и, следовательно, между двумя полосами. Поэтому, если мы коснемся дорожек в этой ситуации, мы заметим небольшую «судорогу» в пальцах из-за напряжения, которое существует между дорожками.

Основной рост пассажирооборота зафиксирован на Калининградской, Куйбышевской, Северной и Северо-Кавказской железных дорогах. Россия занимает первое место в мире по протяженности электрифицированных железных дорог - более 44 тыс. километров (общая протяженность железнодорожных путей - более 85 тыс. километров). Второе и третье места по этому показателю занимают Китай и Германия, имеющие более 24 тыс. и 21 тыс. километров электрифицированных дорог соответственно.

Этот двигатель имеет якорь из трех или пяти катушек, и ток циркулирует от рельсов через щеточки и через эти катушки, замыкающие цепь между рельсами. Мы также должны помнить, что эти локомотивы несут конденсатор параллельно с щетками. Если мы включили стеклоочиститель, индуцированный переменный ток также будет проходить через дорожки к двигателю и конденсатору. С другой стороны, катушки ротора имеют высокий импеданс и работают как «шок», который предотвращает прохождение переменного тока.

Поскольку это очень большое, большое падение напряжения в этом сопротивлении и, следовательно, переменное напряжение, которое достигает трансформатора, практически снизится до нуля. При этом переменное напряжение практически исчезает из красного контура, и поэтому почти ничего не приходит в локомотив.

Предполагается, что к 2013 году на электрифицированных участках российских железных дорог будет выполняться до 84% всей перевозочной работы. Наиболее протяженной (и одновременно старейшей) среди российских железных дорог является Октябрьская (введена в эксплуатацию в 1851 году; достигает длины в 10334 километров; проходит по территориям Москвы и Санкт-Петербурга, Московской, Ленинградской, Новгородской, Псковской, Вологодской, Мурманской, Тверской и Ярославской областей и Республики Карелия; максимальная достигнутая скорость на линии Москва - Санкт-Петербург составляет 260 километров в час). Октябрьской дороге по протяженности уступают Московская (8984 километра) и Свердловская (7091,3 километра). Наименее протяженные среди российских железных дорог - Калининградская (963 километра) и Сахалинская (804,9 километра).

Существует только небольшая дополнительная циркуляция переменного тока очень низкого напряжения, которая проходит через локомотив через конденсатор. Теперь предположим, что между колесом и рельсом помещена частица грязи и предотвращает прохождение тока через локомотив. Фактически ситуация в случае 1 была воспроизведена, за исключением того, что теперь высокое переменное напряжение передается через внутреннюю часть локомотива на колесо, которое было изолировано, в то время как другой полюс этого напряжения находится в полосе ниже.

Так как это расстояние обычно очень мало, возникает крошечная искра, которая должна сжечь грязь, которая вызвала перерыв. Когда электрический контакт между колесом и рельсом восстанавливается, ситуация возвращается к случаю. Важно то, что при использовании электронных стеклоочистителей необходимо устранить антипаразитные конденсаторы, которые несут некоторые маршруты подачи, поскольку эти конденсаторы будут обеспечивать альтернативный путь к высокочастотному току. Это та же самая предосторожность, которая рекомендуется при использовании цифровых систем.

Количество грузов, перевезенных по российским железным дорогам в 2011 году, составило 1 млрд. 311 млн. 312 тыс. тонн (на 3% больше, чем в 2010 году, и на 0,7% больше плана), грузооборот - 1 трлн. 948 млрд. тонно-километров (рост - 4,8%). Объемы перевозок большей части основных видов грузов, по сравнению с ранее запланированными, были превышены: нефти и нефтепродуктов - на 4,6% (всего перевезено 228 млн. 310 тыс. тонн), каменного угля - на 3,3% (287 млн. 548 тыс. тонн), кокса - на 0,9% (11 млн. 347 тыс. тонн), руды железной и марганцевой - на 6,8% (108 млн. 350 тыс. тонн), лома черных металлов - на 2,2% (26 млн. 639 тыс. тонн), цемента - на 11,6% (38 млн. 236 тыс. тонн), продукции лесной отрасли - на 0,1% (64 млн. 154 тыс. тонн).

Понятно, что эффект очистки происходит только тогда, когда локомотив движется по дороге и более чем истинное устранение накопленной грязи, что он делает, чтобы обеспечить электрический контакт между колесами и дорожкой. Таким образом, реальные преимущества получаются, если система постоянно подключена. След остается чистым, а колеса локомотивов остаются чистыми. Чем чаще циркуляция, тем чище маршрут остается. Когда система подключена и на дорожке нет локомотива, нет никакого эффекта очистки, и легкая судорога, ощущаемая при касании дорожки, является «побочным эффектом», который не влияет на функцию уличного очистителя.

2.1 НАЗНАЧЕНИЕ

Трансформатор ОДЦЭ-5000/25Б предназначен для преобразования напряжения контактной сети в напряжение цепей тяговых двигателей и собственных нужд электровоза.

Технические данные:

Напряжение сетевой обмотки 25000 В

Мощность сетевой обмотки 1485 кВА

Ток тяговой обмотки:

длительный 1750 А

часовой 1840 А

Кстати, если мы коснемся обеих полос одновременно пальцем, мы можем ожидать получить разряд 300 вольт, что может быть опасно. Еще одно соображение заключается в том, что для того, чтобы эффект очистки происходил, когда колесо не соприкасается с рельсом, другого альтернативного пути переменного тока не может быть. Только тогда произойдет перерыв в прохождении переменного тока и последующее повышение напряжения, которое приведет к скачке искры. Поэтому, если есть альтернативный путь для текущего, эффект будет отменен.

Например, если у нас есть поезд с огнями в вагонах, ток, текущий через вагоны, делает недействительным эффект очистки. И, конечно же, наличие другого локомотива в одной и той же схеме полностью аннулирует эффект очистки, потому что даже если он прерывается, ток продолжает циркулировать через второй локомотив, и стеклоочиститель не действует. Таким образом, это приводит нас к двум выводам.

Напряжение холостого хода:

тяговой обмотки 1218 В

обмотки собственных нужд 232; 406: 638 В

Ток обмотки собственных нужд номинальный. 550 А

При работе по схеме резервирования 1000

Мощность обмотки собственных нужд 225 кВА

Коэффициент трансформации обмоток:

сетевая--тяговая 20,5±0,1

сетевая--собственных нужд 61,5±0,31

Первое, что для правильного использования электронной дорожной размотки модель должна быть разделена на несколько цепей, так что в одном отсеке одновременно нет двух локомотивов. Эта концепция соответствует концепции «кантона», поэтому ее нетрудно достичь в аналоговых моделях, где система контроля движения была установлена ​​системой кантона. Во-вторых, для каждого кантона необходим отдельный уличный уборщик. Настолько же, что оборудование изготовлено для одного и двух цепей с тем фактом, что обычно требуется несколько устройств.

И, очевидно, ясно, что система становится очень плохой с цифровой установкой. Во-первых, притвориться, что цепь треков секционируется в независимых секторах или кантонах, так что в каждом секторе одновременно работает только один локомотив, непосредственно связанный с философией цифровых систем, которые характеризуются именно тем, что способны управлять несколькими локомотивами в той же схеме. Но хуже всего то, что цифровой ток также является переменным током, который смешивается с переменным током уличного чистящего средства.

Общие потери Не более 100 кВт

Коэффициент полезного действия 97,6 %

Расход воздуха на охлаждение 333 м3/.мин

Срок службы 20 лет

Масса 8000 кг

2.2 УСТРОЙСТВО

Активная (выемная) часть 7 помещена в стальной восьмигранный бак с трансформаторным маслом ТКп ГОСТ 982-68, которое обеспечивает необходимую изоляцию и охлаждение обмоток. Соединение бака с крышкой фланцевое, с резиновым уплотнением 12. В нижней части торцовых граней бака установлены два упора 19 для крепления активной части. Отверстия в баке в местах установки упоров закрыты съемными стальными заглушками 18. Опорами трансформатора являются четыре кованых конических стакана 5, размещенных в двух опорных балках 10. При установке трансформатора в электровоз стаканы опираются па резиновые конусы балок кузова.

Вероятно, высокое напряжение уличного очистителя разрушит декодер локомотива. Как мы уже говорили, вам нужен источник питания переменного тока около 16 вольт, и они вставлены между контроллером и соединением с дорожкой. Из-за их компактных размеров насосы легко интегрируются в масляный контур, и важно расположить насос таким образом, чтобы избежать чрезмерного сопротивления потоку со стороны всасывания. Конструкция наших циркуляционных насосов без Сальник прост и их конструкция прочная. Осевые насосы с колесами рабочего колеса снабжены смотровым стеклом для проверки направления вращения. Двигатель и подшипники полностью слиты из трансформаторного масла, чтобы предотвратить перегрев двигателя и износ подшипника. Для различных применений доступны три конструкции насоса.

Для уплотнения фартука трансформатора с полом кузова применена резина.

Балка-камера 3 является элементом конструкции рамной подвески бака, используется как воздуховод системы охлаждения, увеличивает жесткость продольных граней бака. Охладитель 6 состоит из шести секций радиаторов, расположенных двумя группами па боковых гранях бака. Каждая секция состоит из комплекта ребристых медных труб, соединенных по концам с коллекторами. Охладитель не имеет собственных вентиляторов и обдувается воздухом из системы вентиляции электровоза. Циркуляция масла в системе охлаждения обеспечивается электронасосом 17. Этот насос представляет собой моноблочный агрегат, состоящий из одноступенчатого центробежного насоса и трехфазного асинхронного короткозамкнутого электродвигателя. поток масла направляется в нижнюю ярмовую балку 9 и через кольцевые пазы в верхней полке балки поступает в каналы обмоток. Картонными прокладками, перекрывающими осевые каналы, создается направленное движение масла из осевых каналов в радиальные. Запрещается включение электронасоса при температуре масла ниже -- 150 С. Температура масла в эксплуатации не должна превышать длительно 85°С, кратковременно 95°С.

Осевые и наклонные насосы, связанные с радиальными колесами, и осевые насосы, связанные с колесами пропеллерного типа. Насосы с радиальными колесами для тяговых трансформаторов железнодорожного транспорта.

  • Приложения для силовых трансформаторов.
  • Применения для тяговых трансформаторов.
Трансформаторное масло протекает в осевом направлении через полый вал в направлении рабочего колеса. Спиральный кожух используется для внутреннего давления. Поток может быть адаптирован к системе охлаждения с использованием другого диаметра колеса.

Рис. 1. Тяговый трансформатор ОДЦЭ-5000/25Б

Расширитель 2 предназначен для компенсации температурных колебаний уровня масла в баке. Контроль уровня масла в расширителе осуществляется, но маслоуказателю Й. Часть расширителя над поверхностью масла заполнена воздухом, который сообщается с атмосферой через отверстие в пробке ЙЙ. Для доливки масла в расширитель служит отверстие, закрытое пробкой 13.

Для внутреннего давления используется радиальная спиральная крышка. Подшипники и двигатель сливаются с потоком масла от трансформатора. Скорость потока может быть адаптирована к системе охлаждения с использованием другого диаметра колеса. Эксплуатация насоса облегчает естественную конвекцию при запуске при высоких температурах окружающей среды. Из-за большого поперечного сечения потока этого насоса свободный поток трансформаторного масла не ограничен, когда насос отключен, поэтому при закрытии насоса во время работы не требуется обход. с частичной нагрузкой.

На крышке трансформатора установлены: два ввода сетевой обмотки па ток 275 А 16; четырнадцать вводов тяговых обмоток на ток 2000 Л 15; четыре ввода обмотки собственных нужд на ток 1000 А 14.

Соединение вводов с отводами 8 выполнено демпферами из гибких медных проводников. Все вводы разборные и допускают замену изоляторов без подъема активной части.

Термометр манометрический сигнализирующий типа ТСМ-100 предназначен для измерения температуры и для сигнализации предельно допустимых температур нагревательных устройств.

Принцип действия прибора основан на зависимости между температурой и давлением насыщенных паров заполнителя (хлорметил), заключенного в герметически замкнутой системе, состоящей из термобаллона, соединительной трубки (капилляр) и манометрической пружины измерительного прибора. Активная (выемная) часть трансформатора состоит из двухстержневого магннтопровода и концентрических обмоток, выполненных из медных проводов с бумажной изоляцией.

Стержни магнитопровода имеют в поперечном сечении ступенчатую форму и изготовлены из листов холоднокатаной электротехнической стали толщиной 0,35 мм.

Обмотки каждого стержня закреплены на трех изоляционных цилиндрах с помощью картонных прокладок и реек. При эксплуатации трансформатора происходит усадка изоляционных прокладок. Для обеспечения постоянного усилия осевой стяжки обмоток применено специальное устройство 4, выполненное в виде наклонной штанги, один конец которой шарнирно укреплен в ярмовой балке, а другой связан с подвижным башмаком, расположенным на прессующем кольце. В башмак упирается пружина, стремящаяся сместить его и привести штангу в вертикальное положение. Такая конструкция обеспечивает практически постоянное усилие осевой стяжки.

Тяговые обмотки трансформатора соединяются контактами группового переключателя в две группы. Каждая группа через выпрямительную установку подключается к двум тяговым двигателям.

Обмотки группы расположены только на одном стержне магнитопровода.

Сначала у сердечника расположены нерегулируемые части тяговых спиральных обмоток (вводы al-xl обмоток на одном стержне и а"2-х"2 на другом). В середине размещена сетевая непрерывная обмотка (вводы Л-Х). Сетевые обмотки обоих сердечников соединены параллельно. Па наружном цилиндре расположены дисковые катушки регулируемой части тяговой обмотки (вводы Й, 2, 3, 4, 01 обмотки на одном стержне и 5, 6, 7, 8, 02 на другом стержне) и обмотки собственных нужд.

2.3 РАБОТА

В процессе эксплуатации электровозов и электропоездов переменного тока в их силовых цепях могут возникать аварийные режимы, способные вызвать появление неисправностей в трансформаторах и реакторах. Так, при сквозном пробое плеча выпрямительной установки или выпрямительно-инверторного преобразователя вторичная обмотка трансформатора оказывается замкнутой накоротко и ток в ней резко возрастает. Это может вызвать повышенный нагрев токоведущих элементов и, как следствие, привести к снижению диэлектрических свойств масла и органической изоляции трансформаторов и реакторов. Резкое увеличение тока обусловит одновременно и появление механических перегрузок, под действием которых может ослабнуть крепление обмоток трансформатора. Резкое увеличение тока в цепи выпрямленного тока может привести к недопустимому нагреву обмоток индуктивных шунтов, что не только ухудшит диэлектрические свойства изоляции и ускорит ее старение, но и может привести к ее пробою.

В трубопроводах, радиаторах и в сварных швах бака трансформатора возможна течь масла. К течи масла могут привести и образовавшиеся неплотности в разъемных соединениях системы масляного охлаждения трансформатора из-за неудовлетворительного крепления фланцев, порчи резинового уплотнения, неплотности пробки для спуска воздуха у изоляторов первичной обмотки трансформатора, неудовлетворительного крепления нажимной гайки у изоляторов вторичной обмотки и болтов крышки трансформатора из-за трещин в фарфоровом корпусе изоляторов, повреждения резиновой прокладки между крышкой и баком, соединений трубопроводов, сварных швов, радиаторов системы охлаждения и т. д. В свою очередь от надежной работы системы масляного охлаждения зависит и состояние изоляции обмоток трансформаторов.

В эксплуатации наблюдались случаи появления трещин в опорных узлах, повреждения резиновых прокладок, отслоения краски на внутренних поверхностях бака, повреждения манометра, термометра, обрыва меди обмоток, повреждения глазури фарфоровых изоляторов и возникновения у них сколов.

2.4 РЕМОНТ

При выполнении ТО-1 проверяют исправность тягового трансформатора, а также наличие и уровень масла в расширительном баке. В случае его отсутствия подъем токоприемника и эксплуатация электровоза запрещаются.

До поднятия токоприемника изоляторы и другие детали трансформатора необходимо протереть от пыли и масляных пятен. В пути следования локомотивная бригада обязана периодически контролировать температуру масла тягового трансформатора. Пробой на корпус из-за пониженного уровня масла или ухудшения его качества выявляется по срабатыванию аппаратов защиты.

Выполняя техническое обслуживание ТО-2 , во время осмотра тягового трансформатора проверяют уровень масла в расширительном баке, убеждаются в отсутствии течи масла в баке, изоляторах и соединительных трубопроводах масляной системы. Кроме того, проверяют состояние крепления шунтов и кабелей, состояние реагентов воздухоочистителя.

При выполнении ТО-2 предусмотрены: осмотр, проверка состояния крепления узлов и деталей; проверка надежности контактных соединений у реакторов, индуктивных шунтов и ТРПШ. При обнаружении ослаблений резьбовые соединения подтягивают.

При ТО-3 сразу же после постановки их на ремонтное стойло по термометрическому сигнализатору проверяют температуру масла, которая при нормальной работе трансформатора не должна превышать установленных норм. Если температура масла все же превышает предельные значения, выясняют причину перегрева.

1. Объем ремонта трансформатора определяется предварительными диагностическими испытаниями и дефектацией активной части трансформатора

Для тяговых трансформаторов электровозов переменного тока установлены объемы ремонта:

без разборки активной части (капитальный ремонт КР-1) с разборкой активной части, со сменой изоляции и обмоток по состоянию(капитальный ремонт КР-2).

Ремонту с разборкой активной части подлежат трансформаторы: не удовлетворяющие испытательным параметрам; имеющие неудовлетворительное состояние изоляции обмоток (хрупкий электрокартон, ломающийся при изгибе до угла 90°, ветхую расползающуюся при натяжении хлопчатобумажную изоляцию;

бумажную изоляцию, имеющую потемневший цвет и дающую при изгибе трещины);

требующие ремонта магнитопровода с расшихтовкой пластин. Обмотки,

имеющие неудовлетворительное состояние изоляции, подлежат замене.

Разрешается при капитальном ремонте КР-1 электровозов устанавливать отремонтированные в обьеме КР-2 тяговые трансформаторы и наоборот.

2. При капитальном ремонте КР-1 тяговых трансформаторов.

Ремонт и испытание тяговых трансформаторов производить в соответствии с требованиями действующих Технологических инструкций и руководств. При ремонте трансформаторов без разборки активной части произвести следующие основные работы:

Предварительные испытания для определения состояния изоляции и характера возможных дефектов.

Разборку со съемом расширителя, охладительной системы, центробежного насоса, с выемкой активной части.

Ремонт активной части, при необходимости с заменой изоляции и отдельных деталей рамы, с устранением местных повреждений витковой изоляции наружных обмоток и изоляции стяжных шпилек.

Ремонт или замену секций холодильников, кранов, вентилей, электронасосов, воздуховодов, воздухоосушителей, клапанов. Элементы охлаждения трансформатора ремонтировать согласно действующих Технологических инструкции и руководств.

Ремонт или частичную замену шинных отводов, демпферов, выводов высокого, низкого напряжения и собственных нужд.

Ремонт бака трансформатора, расширителя, крышки.

Гальваническое покрытие деталей, предусмотренных техническими условиями заводов-изготовителей.

Вакуумную сушку активной части с подтяжкой крепления обмоток.

Полную замену деталей уплотнения из резины, паронита и асбеста.

Очистку и регенерацию трансформаторного масла.

Проведение установленных измерений и испытаний трансформатора на стенде.

Окраску и окончательную отделку трансформатора.

Резиновые амортизаторы трансформатора заменить на новые.

3. При капитальном ремонте КР-2 тягового трансформатора.

Дополнительно произвести следующие основные работы:

Замену обмоток с негодной витковой изоляцией или со значительным выгоранием меди.

Замену или ремонт деталей ярмовой, уравнительной изоляции, экранов, уголков, бакелитовых цилиндров, сушку и пропитку обмоток.

Разборку и ремонт в случае необходимости магнитопровода с восстановлением негодной изоляции и заменой листов магнитопровода, замену и ремонт стяжных шпилек и их изоляции.

Полную замену трансформаторного масла на новое.

Во время технического осмотра электроподвижного состава проверяют состояние главного трансформатора и протирают салфеткой изоляторы: проходной главного ввода, выводов первичной и вторичной обмоток и разрядников. Проверяют крепление проводов к маслоструйным реле и масляным мотор-насосам и шин к разрядникам. Ослабшие провода и шины закрепляют. Проверяют отсутствие течи масла из бака трансформатора, убеждаются в плотности фланцев выводов вторичной обмотки. Обнаруженную течь устраняют. При профилактическом осмотре более тщательно проверяют состояние главного трансформатора и проверяют уровень масла в нем по указателю. При надобности масло добавляют. Проверяют состояние выводов трансформатора, крепления ошиновки и отсутствие течи масла из бака трансформатора. Осматривают маслоструйные реле, проверяют состояние блок-контактов и зачищают их. Проверяют заземление анодных делителей и надежность крепления их контактов, осматривают крепление обмоток переходных дросселей и состояние клиц выводов.

Для ревизии, ремонта и испытаний, трансформатор снимают с э. п. с. и передают в трансформаторное отделение депо, которое должно быть сухим и чистым. Перед снятием трансформатора выводы его вторичной обмотки закорачивают, снимают емкостные заряды и заземляют штангой вывод высоковольтной обмотки. Снимают с трансформатора (кроме трансформаторов электровозов ВЛ80р и ВЛ85) главный контроллер, переходные реакторы и отсоединяют подходящие к нему воздухопроводы и кабели. В трансформаторном отделении его очищают от пыли и грязи, тщательно осматривают его, выявляют пробоины, течь масла в баке, расширителе, охлаждающей системе, кране, фланцах и выводах.

Если в результате осмотра выявляется просачивание масла в сварных швах, фланцах выводов или других местах, проводят дополнительную проверку их способом избыточного давления масляного столба.

Для этого устанавливают трубу диаметром с воронкой над отверстием пробки в крышке расширителя. Столб масла в трубе с воронкой высотой 0,3 мм выдерживают в течение 15 мин, наблюдая за уплотнениями. Появившуюся течь устраняют и повторяют испытания. Отбирают пробу масла для лабораторного анализа. Вынутая из бака активная часть трансформатора должна иметь температуру не ниже температуры воздуха помещения цеха. Если холодная активная часть будет находиться в помещении с более высокой температурой, на ней будут конденсироваться пары воздуха, что приведет к увлажнению изоляции обмоток.

В зимнее время на холодном трансформаторе, поставленном в теплое помещение, будет наблюдаться отпотевание или заиндевение. Поэтому перед вскрытием холодного трансформатора его выдерживают в помещении до уравнивания температур.

Выемная часть может находиться вне бака трансформатора с маслом не более 7 ч. В противном случае или при заниженном сопротивлении изоляции активную часть сушат в вакуум-сушильном шкафу при вакууме не менее 5 кПа (0,05 кгс/см2) или в собственном баке, для чего обмотку закорачивают, причем ток в ней не должен превышать половины номинального тока обмотки. На электропоездах снимают соединительные трубопроводы, отсоединяют подводящие провода, кабели и другие элементы, связывающие трансформатор с другими установками. До выемки активной части измеряют сопротивление изоляции обмоток трансформатора по отношению к корпусу и друг к другу. При демонтаже на срок свыше 3 ч плоские краны закрывают металлическими заглушками. Для предотвращения попадания в трансформаторное масло пыли и грязи места разъема крышки с баком тщательно протирают. Отворачивают все болты крепления крышки к баку.

Технология ремонта тягового трансформатора.

Перед выемкой активной части сливают масло из бака и перекачивают его по трубопроводам трансформаторного отделения. Для предотвращения накопления электростатического заряда при сливе масла или заполнения им бака выводы обмоток следует соединить с баком проводом площадью сечения не менее 1,5 мм2. Затем чалочным приспособлением, предварительно убедившись, что подъему ничто и никто не мешает, поднимают активную часть трансформатора на 3/4 высоты и дают маслу стечь с обмоток в бак. Затем окончательно поднимают активную часть и устанавливают в цехе на противень с деревянным настилом.

Если активная часть сильно загрязнена, то ее промывают чистым подогретым трансформаторным маслом. Допускается предварительно удалить остатки масла деревянным скребком.

Осмотр и ремонт активной части трансформатора начинают с проверки состояния выводов катушек и гибких проводов. Проверяют все болтовые крепления, ослабшие подтягивают и, если необходимо, ставят контргайки и болты закернивают. Тщательно осматривают места пайки отводов к шинам, затягивают болты, сжимают обмотки в осевом направлении. Осматривают стяжные клицы, защитные фартуки, шпильки и другие детали крепления обмоток. Следят за тем, чтобы выводы катушек располагались друг от друга на расстоянии 5--10 мм.

Для увеличения плотности по резьбе деревянных гаек на резьбу стержней наматывают льняные нитки. Во избежание ослабления шин и излома клиц их стягивают осторожно, не допуская прогиба.

Оголенные места и места с обдирами на наружных витках катушек регулировочной обмотки ремонтируют, применяя коробочки из кабельной бумаги К-800 или К-120. Для этого в местах повреждения изоляцию подрезают и зачищают, устраняя заусенцы, нарезают шесть--восемь полосок кабельной бумаги соответствующей длины с учетом перекрытия изоляции провода по 10 мм в обе стороны от места повреждения, промазывают полоски бумаги и медь в месте повреждения клеем БФ-2 или БФ-4 и дают клею подсохнуть на воздухе 3--5 мин; затем накладывают на место повреждения полоски в виде коробочки, тщательно разглаживая каждую полоску, накладывают в месте восстановления изоляции витка поверх всей ширины катушки в радиальном направлении общий бандаж из тафтяной ленты -- один слой вполуперекрышу. Ленту пропускают вокруг катушки с помощью крючка из электрокартона, вставляемого в канал между катушками.

Для замены отдельных изоляционных прокладок, образующих масляные каналы между катушками регулировочной обмотки, концы негодной прокладки с наружного клина срезают и легким усилием руки выдергивают ее. Новую прокладку вставляют на место, осторожно подбивая ее деревянной подбойкой; прокладку устанавливают без каких-либо смещений по отношению к остальным прокладкам данного ряда. Ослабление прессовки обмоток трансформатора устраняют в следующем порядке: ослабляют контргайки, равномерно затягивают до отказа стяжные шпильки, подкладывают под гайки замковые пластины, после чего устанавливают контргайки.

Перед затяжкой шпилек проверяют состояние изолирующих колпачков под прессующими башмачками, поврежденные колпачки заменяют новыми. При подпрессовке обмоток нельзя смещать и исправлять изоляционные прокладки между катушками. Столбы прокладок должны быть строго вертикальны. Расклиновку обмоток выполняют осторожно, не допуская повреждений витковой изоляции.

В обмотках с каналами диаметром 5 мм забивают две дополнительные прокладки по 2,5 мм между основными прокладками, а в обмотках с каналами диаметром 6 мм -- одну прессованную прокладку под верхнее опорное кольцо. Забивать прокладки под плоскости катушек запрещается. Дополнительные прокладки должны входить на всю глубину основных прокладок и не иметь по отношению к ним боковых смещений.

Сжатие обмотки трансформатора электровоза осуществляют равномерной подтяжкой болтов с моментом затяжки 120--130 Н м (12--13 кгс-м), после чего контргайки затягивают, а резьбу закернивают. На электровозе ЧС4Т болты фиксируют проволокой. При ослаблении стяжки магнитопровода затягивают болты в нижней части стяжной рамы по обеим сторонам нижней части бака. Момент силы затяжки болтов составляет 50--60 Н м (5--6 кгс-м). Если у катушки есть выпученность, но обрыва, короткого замыкания в ней нет и сопротивление ее изоляции удовлетворительно, то разрешается выправлять выпученность легкими ударами молотка через деревянную прокладку.

Изоляция витков должна иметь одинаковый соломенно-желтый цвет без следов местного чрезмерного нагрева. Наличие графитового осадка указывает на имевшее ранее место электрическое перекрытие. Если во время эксплуатации было замечено повышенное гудение трансформатора, проверяют крепление магнитопровода. Осматривают гибкие провода выводов; при наличии обрывов жил гибкие провода снимают и ремонтируют.

Разборку обмоток активной части выполняют в случае обнаружения в ней скрытой неисправности, для чего ее освобождают от связей, снимают крышку трансформатора, верхние ярмовые балки и аккуратно разбирают пакеты ярма, укладывая их в том порядке, в каком снимают. Одновременно составляют схему расположения пакетов в стержне, пронумеровывают пакеты, и номера их записывают на схеме. Такой порядок в дальнейшем обеспечивает быструю и правильную сборку магнитопровода.

Бак трансформатора и расширительный бак осматривают. Дистанционный термометр с расширительного бака снимают для проверки в отделении контрольно-измерительных приборов, а стенки бака тщательно очищают от масла.

Сборка, проверка и испытание тягового трансформатора

Сборка тягового трансформатора выполняется в следующем порядке. До установки в бак собранной активной части трансформатора осматривают резиновые прокладки, негодные заменяют. Прокладки должны быть изготовлены из маслостойкой резины. На бак устанавливают электронасос. После установки активной части, дистанционного термометра и закрепления крышки бака открывают спускной кран, включают центробежный насос и заливают масло, периодически включая и выключая центробежный насос. Внешним осмотром убеждаются в отсутствии течи масла и, контролируя по маслоуказателю, доливают масло до требуемого уровня.

После заливки масла выпускают воздух из коллекторов радиаторов системы охлаждения и внутренних полостей изоляторов трансформатора. Для этого вывертывают пробки на коллекторах радиаторов и на верхних колпачках изоляторов и закрывают их после появления в отверстиях масла. Сразу же после заливки отбирают пробу масла для полного анализа. Электрическая прочность масла должна быть не ниже 35 кВ. Через 12 ч берут повторно пробу масла.

Испытание трансформаторов проводят с целью проверки соответствия полностью собранного трансформатора техническим условиям.

У отечественных трансформаторов проверяют электрическую прочность трансформаторного масла, измеряют сопротивление изоляции обмоток и сопротивление их постоянному току. Электрическую прочность масла проверяют спустя 12 ч после заливки его в бак трансформатора. Во время отстоя трансформатора осуществляют обкатку электронасоса в течение 3 ч для удаления воздуха из обмоток и изоляционных частей трансформатора.

При положительном анализе трансформаторного масла, проведенном в соответствии с государственным стандартом, и если пробивное напряжение на стандартном разряднике оказалось не ниже 40 кВ, проводят следующие электрические испытания.

Сопротивление изоляции обмоток измеряют мегаомметром напряжением 2500 В через 60 с после приложения напряжения при температуре изоляции не ниже +10°С. Наименьшие значения сопротивления изоляции для каждого типа трансформатора приведены в соответствующих заводских инструкциях. Однако по сопротивлению изоляции можно сделать только грубое предварительное заключение об отсутствии каких-либо существенных дефектов изоляции обмоток. Это измерение проводят перед испытаниями электрической прочности изоляции.

Электрическую прочность изоляции испытывают с целью установления надежности изоляции обмоток относительно друг друга и по отношению к заземленным частям трансформатора, а также для проверки изоляции между отдельными частями каждой из обмоток и между витками.

Метод приложенного напряжения применяют при использовании постороннего источника напряжения частотой 50 Гц. Испытанию подвергают каждую обмотку как по отношению к другим обмоткам, электрически не соединенным с ней при работе, так и по отношению к заземленным металлическим частям трансформатора. Испытательное напряжение прикладывают в течение 1 мин между замкнутой накоротко испытуемой обмоткой и заземленным баком, с которым соединяют магнитную систему и замкнутые накоротко все остальные обмотки испытуемого трансформатора.

Источником питания служат трансформаторы ИОМ-100/100 для обмотки высшего напряжения и ОМ-20/10 для обмоток низшего напряжения и собственных нужд. Значения испытательных напряжений указаны в заводских инструкциях.

Испытание индуцированным напряжением носит контрольный характер. Его выполняют для выявления повреждения изоляции обмоток, которое могло возникнуть в результате испытания ее приложенным напряжением. К выводам одной из обмоток подводят двойное номинальное напряжение этой обмотки частотой 200 Гц в течение 30 с. Все остальные обмотки должны быть разомкнуты. В каждой обмотке трансформатора при этом будет наводиться э. д. с. повышенной частоты, равная двойному номинальному напряжению данной обмотки. Частоту повышают для того, чтобы при двойном индуцированном напряжении намагничивающий ток в трансформаторе сохранился на прежнем уровне.

Трансформатор считается выдержавшим испытание, если не наблюдалось толчков тока, а намагничивающий ток имел нормальное для данного трансформатора значение. Всякое увеличение тока свидетельствует о наличии дефекта в изоляции обмотки.

По коэффициенту трансформации определяют правильность числа витков в обмотках трансформатора. На проверяемую обмотку низшего напряжения подают пониженное напряжение и измеряют напряжение на выводах. Выводы обмоток выбирают по схеме соединения обмоток трансформатора. Коэффициент трансформации определяют как отношение высшего напряжения к низшему. Отклонения напряжений от номинальных значений допускаются не более ±0,5%.

Сопротивление меди обмоток постоянному току позволяет судить о наличии дефектов в обмотке. Кроме того, по его значению можно обнаружить ошибку в намотке обмоток проводом иной, чем предусмотрено, площадью сечения, а также обрыв одной из параллельных ветвей обмотки.

Сопротивление меди можно проверить мостом или методом вольтметра-амперметра. В последнем случае, включив выключатель 2, подводят к проверяемой обмотке 1 через резистор R постоянный ток, фиксируя по амперметру. Сопротивление меди можно измерит по амперметру А и вольтметру V значения тока и напряжения.

Результаты испытаний заносят в протокол, который прикладывают к паспорту трансформатора.

Предельно допускаемые размеры деталей при эксплуатации и различных видах технического обслуживания и ремонта

После ремонта тяговые трансформаторы подвергают предварительным и контрольным испытаниям. Предварительно испытывают обмотку, изоляцию магнитопровода, вводы на крышке, бак на герметичность. Степень увлажнения изоляции может быть оценена коэффициентом абсорбции который определяют для всех групп обмоток с помощью мегаомметра напряжением 2,5 кВ как отношение сопротивления изоляции при вращении рукоятки в течение 60 с к значению сопротивления при вращении в течение 15 с. При превышении этого значения обмотку сушат в вакуум-сушильном шкафу или в собственном баке, закорачивая тяговую обмотку. С целью проверки качества ремонта собранного трансформатора проводят контрольные испытания в соответствии с диагностическим тестом.

Минимальное сопротивление изоляции, МОм: высоковольтной обмотки -- 50, цепи обмоток низкого напряжения электровозов ВЛ60К, ВЛ80К, ВЛ80Т -- 1,5; цепи обмоток 0152 электровозов ЧС4 -- не ниже 1,2. Изоляция должна быть одинакового соломенно-желтого цвета

Шпильки клицы, узлы крепления магнитопровода не должны иметь перемещений. Сопротивление изоляции -- не ниже 5 Мом.

В эксплуатации насос должен развивать напор около 100 кПа.

Приспособления, технологическая оснастка, средства механизации, оборудование, применяемое при ремонте

При ремонте тягового трансформатора применяют следующее оборудовании:

1. Стенд для испытания электрической прочности изоляции электрооборудования ЭПС, типа А2373.01.

2. Стенд для испытания аппаратов электровозов переменного тока, типа А2084-01.

3. Индикатор универсальный «Элин-1».

4. Вакуумно-сушильный шкаф.

3. Техника безопасности при ремонте, сборке, испытании тягового трансформатора. Организация рабочего места.

Общие требования безопасности труда. Слесарь должен: применять безопасные приемы труда; содержать в исправном состоянии и чистоте инструмент, стенды и приспособления; выполнять входящую в его обязанности или порученную мастером работу; внимательно следить за сигналами руководителя работ и выполнять все его указания и распоряжения.

Требования безопасности перед началом работ. Перед началом работы слесарь должен надеть полагающуюся ему исправную спецодежду и спец. обувь, привести их в порядок. Не допускается носить спецодежду расстегнутой и с подвернутыми рукавами. На рабочем месте слесарь должен внешним осмотром проверить состояние инструмента, приспособлений, наличие на стеллажах и ремонтных установках запасных частей и материалов. Неисправный инструмент, измерительные приборы, шаблоны должны быть заменены на исправные. При производстве работ в другом цехе доложить мастеру данного цеха о необходимости выполнения определенных операций и приступить к ним после получения разрешения. Обо всех обнаруженных недостатках слесарь обязан сообщить мастеру и не приступать к работе до их устранения.

Требования безопасности в аварийных ситуациях. При возникновении аварийной ситуации слесарь обязан прекратить работу, немедленно сообщить о случившемся мастеру и далее выполнять его указания по предупреждению несчастных случаев или устранению возникшей аварийной ситуации. Слесарь, находящийся вблизи от места происшествия, по сигналу тревоги обязан немедленно явиться к этому месту и принять участие в оказании пострадавшему первой (до врачебной) помощи или устранения возникшей аварийной ситуации. При возникновении пожара сообщить в пожарную охрану по телефону и руководителю работ.

Перед постановкой электровоза на ремонт все выводы обмоток трансформатора соединяют друг с другом накоротко и заземляют специальным гибким соединением для того, чтобы исключить возможность трансформации высокого напряжения, например, при случайном прикосновении электродом к электрическим цепям трансформатора во время сварочных работ. Не разрешается оставлять трансформатор на крюке крана подъемного устройства больше времени, необходимого для подъема, перемещения и опускания. При подъеме или опускании активной части в бак запрещается выполнять работы на ней и на баке.

Не разрешается работать под поднятой крышкой трансформатора. Сварочные работы на баке следует выполнять в помещениях, не опасных в пожарном отношении. Перед сваркой бак очищают от остатков трансформаторного масла, промывают или тщательно протирают с внутренней стороны и продувают воздухом для удаления паров масла. Переносные электрические лампы напряжением выше 24 В применять не разрешается. В помещениях, где ремонтируют активную часть трансформатора и очищают масло, запрещается пользоваться приборами с открытым огнем и курить. Здесь должны быть огнетушители и другой противопожарный инвентарь. Перед пайкой активную часть следует протирать и очищать от трансформаторного масла. В помещении для сушки активной части трансформатора не допускается хранение горючих материалов, промасленных концов, ветоши, дерева и др. Помещения должны иметь приточно-вытяжную вентиляцию. Лак, бензин, керосин и другие легковоспламеняющиеся материалы хранят в изолированном помещении. При испытаниях изоляции обмоток и магнитопровода на стенде повышенным напряжением заземляют магнитопровод, трансформатор напряжения и реостат. Испытание производят в диэлектрических перчатках стоя на резиновом коврике.

Несмотря на небольшую токсичность трансформаторного масла, работающие в трансформаторном отделении должны вытирать руки, чтобы предотвратить раздражение кожи маслом, и соблюдать личную гигиену. Требования техники безопасности при испытании изоляции трансформатора на пробивной установке аналогичны описанным выше.

Требования электробезопасности

1. Запрещается приступать к работе на электровозе (электропоезде) при красном или негорящих огнях световой сигнализации на ремонтном стойле (пути) депо, ПТОЛ.

2. Заземление шкафов и ящиков с электрооборудованием необходимо поддерживать в исправном состоянии и проверять при каждом техническом обслуживании и ремонте электровоза (электропоезда). Особое внимание следует обращать на заземление кожухов электропечей и щитков измерительных приборов.

3. Перед техническим обслуживанием или ремонтом оборудования в высоковольтной камере необходимо проверить исправность электрических и механических защитных устройств (блокировок) дверей и ограждений высоковольтной камеры.

Запрещается открывать двери (шторы) высоковольтной камеры (находиться в высоковольтной камере), снимать щиты подвагонных ящиков, кожухи и другие защитные ограждения электрооборудования при поднятом токоприемнике электровоза и электропоезда, а также если к розеткам питания от постороннего источника под кузовом электровоза (вагона электропоезда) подведено напряжение выше 42 В переменного тока или выше 110 В постоянного тока.

4. Подачу напряжения во вспомогательные электрические цепи и электрическую цепь тяговых электродвигателей от постороннего источника тока следует производить при выключенном главном выключателе (быстродействующем выключателе), опущенном токоприемнике, заземленных межсекционных проводах электрических цепей тяговых электродвигателей и заблокированной секции электровоза.

5. Во всех случаях подключения тяговых двигателей под напряжение до 400 В постоянного тока места присоединения питающего кабеля к выводным концам тягового двигателя изолируют.

6. При поднятом и находящемся под напряжением токоприемнике электровоза (вагонов электропоезда) разрешается:

заменять перегоревшие лампы освещения ходовых частей, кузова (без захода в высоковольтную камеру и снятия ограждений), кабин управления, вагонов электропоезда и буферных фонарей при обесточенных цепях освещения;

протирать стекла кабины управления внутри и снаружи и лобовую часть кузова, не приближаясь к токоведущим частям контактной сети, находящимся под напряжением, на расстояние менее 2 м и не касаясь их через какие-либо предметы;

менять предохранители в цепях управления, предварительно их обесточив;

менять прожекторные лампы при обесточенных цепях освещения, если их смена предусмотрена из кабины управления;

осматривать тормозное оборудование и проверять выходы штоков тормозных цилиндров;

проверять на ощупь нагрев букс;

вскрывать кожух и настраивать регулятор давления;

настраивать электронный и вибрационный регуляторы напряжения, стоя на диэлектрическом ковре и надев диэлектрические перчатки и диэлектрические боты;

продувать маслоотделители и концевые рукава тормозной и напорной магистралей;

проверять подачу песка под колесную пару.

На электровозах, кроме того, разрешается:

обслуживать аппаратуру под напряжением 50 В постоянного тока, которая находится вне высоковольтной камеры;

проверять цепи электронной защиты под наблюдением мастера, стоя на диэлектрическом ковре и надев на руки диэлектрические перчатки;

проверять показания электроизмерительных приборов, расположенных в шкафах с электрооборудованием;

проверять показания манометров, расположенных в шкафах с оборудованием;

контролировать по приборам, а также визуально работу машин и аппаратов, не снимая ограждений и не заходя в высоковольтную камеру;

обтирать нижнюю часть кузова;

осматривать механическое оборудование и производить его крепление, не заходя под кузов;

проверять давление в маслопроводе компрессора;

регулировать предохранительные клапаны воздушной системы (кроме электровозов серии ЧС2Т);

производить уборку (кроме влажной) кабины, тамбуров и проходов в машинном отделении.

Выполнение других работ на электровозе, в том числе состоящем из двух и более секций, и электропоезде при поднятом хотя бы на одной из секций электровоза (вагоне электропоезда) и находящемся под напряжением токоприемнике запрещается.

7. Слесарю запрещается:

иметь и применять личные реверсивные рукоятки контроллера машиниста, блокировочные ключи выключателей и других устройств, а также пользоваться заменяющими их приспособлениями;

отключать любое блокирующее устройство, обеспечивающее безопасность ремонтного (обслуживающего) персонала, а также снимать при поднятом токоприемнике съемные крышки подвагонных ящиков с электрооборудованием и другие ограждения на электровозе (вагонах электропоезда);

подниматься на крышу электровоза, вагонов электропоезда под контактным проводом, находящимся под напряжением, а также при снятом напряжении, но еще незаземленном контактном проводе.

8. При техническом обслуживании и ремонте оборудования, узлов и деталей непосредственно на электровозе (электропоезде) следует пользоваться переносными светильниками на напряжение не выше 42 В переменного тока. При работах на электровозе (электропоезде) допускается использование переносных светильников с лампами на напряжение 50 В постоянного тока от аккумуляторной батареи или другого источника питания. Запрещается использование переносных светильников без предохранительных сеток, с поврежденной вилкой и изоляцией проводов.

9. Перед испытанием сопротивления изоляции электрического оборудования повышенным напряжением слесарь должен убедиться, что все работы на электровозе (секции электропоезда) прекращены, работники с используемым в работе инструментом сошли с электровоза (вагонов электропоезда) и вышли из смотровой канавы, электровоз (секция электропоезда) спереди и сзади с правой и левой сторон огражден четырьмя предупреждающими знаками “Внимание! Опасное место”, а спереди и сзади на расстоянии 2 м от электровоза (секции электропоезда) находятся двое дежурных.

10. До подачи испытательного напряжения от трансформатора необходимо проверить его заземление и затем присоединить провода к испытываемому оборудованию. Регулировку испытательного напряжения следует выполнять в диэлектрических перчатках, стоя на диэлектрическом коврике.

11. Проверку сопротивления изоляции мегаомметром и регулировку тока уставки электрических аппаратов без снятия с электровоза (электропоезда) должны проводить два слесаря, один из которых должен иметь группу по электробезопасности не ниже IV, а второй - не ниже III.

12. Провода, отсоединяемые от электрического аппарата, необходимо предварительно обесточить, для чего их следует отключить от аккумуляторной батареи, концы тщательно изолировать и укрепить в положении, исключающем возможность соприкосновения с электрическими аппаратами или заземленными частями электровоза (вагона электропоезда).

13. Испытания сопротивления изоляции электрооборудования повышенным напряжением, проверку целости электрических цепей и измерение сопротивления изоляции с помощью мегаомметра следует производить при закороченных и заземленных вторичных обмотках тягового трансформатора.

После проверки целости электрических цепей или измерения сопротивления изоляции необходимо снять емкостной заряд этих цепей заземляющей штангой путем касания контактным пальцем штанги одного из выводов каждой группы вторичных обмоток тягового трансформатора, которые питают соответствующие преобразователи. Только после этого можно снять перемычки и заземление вторичных обмоток тягового трансформатора.

14. Во время испытания повышенным напряжением и измерения сопротивления изоляции электрооборудования электровоза (электропоезда) с помощью мегомметра запрещается производить любые виды технического обслуживания и

15. Перед испытаниями изоляции аппаратов, снятых с электровоза (электропоезда), на электрическую прочность необходимо проверить исправность блокирующих устройств двери ячейки испытательной станции. Предупредительная сигнализация должна быть включена на протяжении всего времени испытаний.

16. Осмотр тяговых двигателей, подвагонного оборудования, вспомогательных машин и аппаратов электровоза (электропоезда) следует производить только при опущенных токоприемниках на всех секциях электровоза (моторных вагонах электропоезда), выключенных крышевых разъединителях и шинном разъединителе, отключенном выключателе управления в кабине и отключенных ножах выключателей тяговых двигателей.

В работе были рассмотрены конструкция, назначение, условия работы тягового трансформатора, основные неисправности, нормы допусков деталей при выходе из ремонта. Также был рассмотрен процесс осуществления ремонта трансформатора, а также объем работы и охраны труда на рабочем месте.

Литература

1. Курасова Д.А., Эльперин В.И. Справочник технолога по ремонту электроподвижного состава железнодорожного транспорта. -1989.

2. Деповской ремонт электровозов переменного тока.

3. Находкин В.М., Яковлев Д.В. Ремонт электроподвижного состава.

4. Шеремет Д.М. Электропоезда переменного тока. Москва: Транспорт 2006 год

5. Находкин В.М. Ремонт электроподвижного состава.- Москва: Транспорт 1989 год.

6. Хасин Л.Ф. Экономика, организация и управление локомотивным хозяйством.- Москва: Желдориздат 2002 год

7. Инструкция по охране труда при ремонте электровозов и электропоездов ОАО«РЖД» 5 декабря 2013 г. № 2679р.

Размещено на Allbest.ru

Подобные документы

    Назначение и условия работы тягового трансформатора ОДЦЭ-5000/25Б. Основные неисправности, причины их возникновения и способы предупреждения. Предельно допускаемые размеры деталей при эксплуатации и различных видах технического обслуживания и ремонта.

    курсовая работа , добавлен 16.05.2012

    Условия работы тягового трансформатора электровоза ВЛ-80С. Основные неисправности и их причины. Требования к объему работ по тяговому трансформатору согласно правилам ремонта. Разработка маршрутной карты, карты эскизов, технологической инструкции.

    курсовая работа , добавлен 20.03.2014

    Назначение тягового двигателя пульсирующего тока НБ-418К6 и его конструкция. Система технического обслуживания и ремонта электровоза. Контрольные испытания двигателей. Безопасные приёмы труда, применяемое оборудование, инструменты и приспособления.

    дипломная работа , добавлен 09.06.2013

    Теоретические и практические аспекты технического обслуживания и ремонта электрических машин подвижного состава железнодорожного транспорта. Разработка технологического процесса для ремонта асинхронного тягового двигателя с короткозамкнутым ротором.

    дипломная работа , добавлен 23.09.2011

    Устройство и работа электровоза переменного тока. Возможные неисправности рамы тележки электровоза ВЛ80С и причины их возникновения. Назначение, тормозная и рессорная системы. Инструмент и нормы допусков при ремонте. Техника безопасности и охрана труда.

    реферат , добавлен 20.05.2013

    Проведение исследования технологии ремонта и полного освидетельствования колесной пары электровоза. Периодичность, сроки и объемы ремонта с полным освидетельствованием. Способы очистки, осмотра и контроля технического состояния колесной пары электровоза.

    курсовая работа , добавлен 01.02.2014

    Организация диагностирования и ремонта роликов моторно-осевых подшипников тягового электродвигателя электровоза вихретоковым контролем. Устройство, принцип работы, основные неисправности и дефекты. Порядок работы в режиме повторной выбраковки роликов.

    курсовая работа , добавлен 25.04.2014

    Типы и назначение электрических аппаратов управления, порядок их технического обслуживания. Устройство и принцип действия контроллера машиниста. Анализ запуска и управления электровоза. Ремонт блока выключателей. Постоянные диски уменьшения скорости.

    курсовая работа , добавлен 17.11.2015

    Назначение и конструкция аккумуляторной батареи электровоза ВЛ10 типа 40КН-125, система ее технического обслуживания и ремонта: приготовление электролита, монтаж аккумуляторов; инструмент и оборудование; техника безопасности при ремонте и обслуживании.

    аттестационная работа , добавлен 29.05.2013

    Исследование назначения, устройства и принципа действия тормозной системы. Анализ основных особенностей электронной антиблокировочной системы автомобиля. Характеристика техники безопасности, технического обслуживания и видов ремонтных работ Honda Accord.

Сторінка 4 з 9

Трансформаторное масло выполняет в трансформаторе три основные функции:
изолирует находящиеся под напряжением узлы активной части;
охлаждает нагревающиеся при работе узлы активной части;
предохраняет твердую изоляцию обмоток от увлажнения.
Эксплуатационные свойства масла и его качество определяются химическим составом масла. Вновь поступившее масло должно иметь сертификат предприятия-поставщика, подтверждающий соответствие масла стандарту. Для масла, прибывшего вместе с трансформатором, соответствие стандарту подтверждается записью в паспорте трансформатора.

При каждом осмотре трансформаторов проверяется температура верхних слоев масла, контролируемая по термометрам или термосигнализаторам. Эта температура не должна превышать 95°С. В противном случае нагрузка трансформатора должна быть снижена.

Состояние масла оценивается по результатам испытаний, которые в зависимости от объема делятся на три вида.

1. Испытания на электрическую прочность. Здесь определяется пробивное напряжение масла Uпр, визуально (качественно) определяется содержание механических примесей и влаги.

Электрическая прочность - одна из основных характеристик диэлектрических свойств масла. Испытания масла на электрическую прочность проводятся в стандартном маслопробойнике (рис. 4), представляющем собой фарфоровый сосуд 1, в который вмонтированы два плоских электрода 2.

Масло заливается в маслопробойник и отстаивается в течение 20 минут для удаления из него воздушных включений. Напряжение на электродах маслопробойника плавно повышается до пробоя масла. С интервалом 10 мин. выполняются шесть пробоев. Первый пробой не учитывается, а среднее арифметическое пяти других пробоев принимается за пробивное напряжение масла.

Снижение пробивного напряжения свидетельствует об увлажнении масла, наличии в нем растворенного воздуха, загрязнении масла волокнами от твердой изоляции и другими примесями.

2. Сокращенный анализ масла. Здесь дополнительно к п.1 определяются температура вспышки масла и кислотное число.

Температура вспышки паров масла в закрытом тигле характеризует фракционный состав масла и служит для обнаружения в трансформаторе процессов разложения масла.

Рис. 4. Стандартный маслопробойник

Кислотное число - это количество едкого кали (КОН), выраженное в мг и необходимое для нейтрализации кислот, содержащихся в 1 г масла. Старение масла сопровождается увеличением в нем содержания кислотных соединений, поэтому кислотное число характеризует степень старения масла.

3. Полный анализ масла. Здесь дополнительно к п.2 определяются, количественное определение влаги и механических примесей, тангенс угла диэлектрических потерь tgS, содержание водорастворимых кислот и щелочей, содержание антиокислительных присадок, температура застывания, газосодержание и другие показатели.

Величина диэлектрическиех потерь (tgS) характеризует степень загрязнения и старения масла.

Влагосодержание тщательно контролируется при эксплуатации трансформаторного масла. Ухудшение этого показателя характеризует нарушение герметичности трансформатора или его работу в недопустимом нагрузочном режиме. В последнем случае происходит интенсивное старение целлюлозной изоляции и выделение ею влаги под воздействием повышенной температуры. Кроме того, масло содержит химически связанную воду, которая может выделяться в виде свободной воды в результате старения масла и под воздействием повышенной температуры.

Увеличение газосодержания (кислорода воздуха) приводит к интенсификации окислительных процессов в масле. Этот показатель косвенно характеризует и герметичность трансформатора.
Температура застывания актуальна для масла, эксплуатируемого в районах крайнего севера.

Различают масло свежее, регенерированное (восстановленное) и эксплуатационное. Характеристики свежего и регенерированного масла практически не отличаются. Для эксплуатационного масла установлены нормально допустимые и предельно допустимые показатели качества.

Нормально допустимые показатели гарантируют нормальную работу оборудования. При показателях масла, приближающихся к предельно допустимым, необходимо принять меры по восстановлению эксплуатационных свойств масла или провести его замену.

В табл. 4 приведены показатели трансформаторного масла в соответствии с сокращенным анализом.

Таблица 4


Показатель масла

Оборудование,

Свежее масло

Регенерир. масло

Эксплуатац. масло

пред.доп.

Uпр ,кВ

кислотное число, мг КОН/г

т-ра вспышки,
°С

* - уменьшение не более чем на 5°С по сравнению с предыдущим анализом.

Для определения показателей масла берется его проба в сухую, чистую, стеклянную емкость вместимостью около 1 л с притертой стеклянной пробкой. Масло берется из нижних слоев через специальный сливной кран. Предварительно сливается некоторое количество масла (2...3 л) для ополаскивания стеклянной емкости. На емкости должна быть этикетка с указанием оборудования, из которого взята проба, даты, причины отбора пробы и фамилии лица, отобравшего пробу масла.

Периодичность отбора проб масла соответствует периодичности текущих ремонтов трансформатора.

Непосредственный контакт масла с атмосферным воздухом приводит к насыщению масла влагой и кислородом. В результате уменьшается электрическая прочность масла, ускоряются окислительные процессы в масле (масло стареет).

Для замедления процессов увлажнения и старения масла в него добавляют антиокислительные присадки, а в конструкции трансформатора предусматривают специальные устройства: термосифонные фильтры, воздухоосушители, пленочную и азотную защиты.

Антиокислительные присадки способствуют поддержанию требуемого качества масла длительное время, а также защищают другие изоляционные материалы трансформатора. Срок службы масла с такими присадками увеличивается в 2...3 раза. Стоимость присадок относительно невелика. Добавку присадок выполняют раз в 4...5 лет. Примером антиокислительной присадки служит технический пирамидон в количестве 3% от массы масла.

Предназначен для поглощения влаги и продуктов окисления и старения масла в процессе эксплуатации. Общий вид термосифонного фильтра приведен на рис. 5,а. Корпус фильтра 1 заполнен адсорбентом 2 (силикагелем или другим веществом), поглощающим влагу и продукты окисления масла. С помощью патрубков 5 фильтр присоединен к верхней и нижней частям бака трансформатора. Масло через фильтр циркулирует за счет разности плотностей нагретого (в верхних слоях) и холодного (в нижних слоях) масла.

Количество адсорбента в фильтре составляет около 1% массы масла. Насыщенный влагой адсорбент удаляется через бункер 4, а через бункер 3 загружается свежий адсорбент. Использованный адсорбент регенерируется нагреванием до температуры 400...500°С.

Насыщение адсорбента влагой контролируется по изменению его окраски. В частности, добавка к силикагелю хлористого кобальта обуславливает его голубую окраску. Появление розовой окраски является признаком насыщения силикагеля влагой и продуктами старения масла.

Трансформаторы мощностью 1000 кВ*А и более должны эксплуатироваться с постоянно включенными термосифонными фильтрами.

Масло очень гигроскопично, и если расширитель непосредственно связан с атмосферой, то влага из воздуха поглощается маслом, снижая его изоляционные свойства. Для предотвращения этого расширитель
связывают с окружающей средой через воздухоосушителъ (позиция 3 на рис. 5,б), заполненный силикагелем.

Принцип пленочной защиты (рис. 5,б) заключается в герметизации масла за счет установки внутри расширителя 2 эластичной емкости 1, предназначенной для компенсации температурного изменения объема масла.

Эта емкость плотно прилегает к внутренней поверхности расширителя и масла, обеспечивая герметизацию последнего от окружающей среды.

Внутренняя полость эластичной емкости соединена с окружающей средой через воздухоосушителъ 3, препятствующий конденсации влаги внутри емкости. Патрубок 4 соединяет расширитель с баком трансформатора.

Азотная защита (рис. 5,в) заключается в заполнении надмасленного пространства 1 герметичного расширителя сухим азотом. Компенсация температурных изменений объема масла осуществляется за счет связи надмасляного пространства с мягким резервуаром 2.

Несмотря на все применяемые защиты, в процессе длительной эксплуатации масло увлажняется и стареет. При приближении показателей масла к предельно допустимым его подвергают регенерации (восстановлению). На специальных установках масло центрифугируют, фильтруют, сушат, дегазируют.



а) б) в)

Рис. 5. Термосифонный фильтр (а), принципиальные схемы пленочной (б) и азотной (в) защит масла

При центрифугировании из масла удаляются твердые механические примеси и частично влага, имеющие большую плотность, чем масло. При фильтровании масло продавливается через пористую среду (картон, бумагу), в которой задерживаются нерастворимые примеси и частично влага. Глубокая сушка масла выполняется распылением в вакууме или на цеолитовых установках, в которых масло фильтруется через слой молекулярных сит - цеолитов, задерживающих молекулы воды, но пропускающих молекулы масла. Растворенный в масле кислород удаляют в специальных дегазационных установках.

Стоимость регенерированного масла при полностью восстановленных эксплуатационных качествах не превышает 50-60% от стоимости нового масла.

Сложности эксплуатации трансформаторного масла: защита от окружающей среды, периодический контроль состояния, испытания, регенерация - обусловили широкое использование в распределительных сетях 6...35 кВ трансформаторов герметичного исполнения (ТМГ), изготавливаемых с номинальной мощностью до 1600 кВ*А. Эти трансформаторы полностью заполнены маслом и не имеют расширителя. Температурные изменения объема масла воспринимаются гофрированным баком.

В трансформаторах ТМГ контакт масла с окружающей средой полностью отсутствует, что исключает его увлажнение, окисление и шламообразование. Масло практически не меняет своих свойств в течение всего срока службы трансформатора. Поэтому при эксплуатации таких трансформаторов отсутствует необходимость периодического взятия проб и испытаний масла.
В настоящее время альтернативой трансформаторному маслу являются жидкие диэлектрики Midel 7131, Софексил ТСЖ и другие. Экологически чистый диэлектрик Midel 7131 (пробивное напряжение 55 кВ, кислотное число 0,02 мг КОН/г, температура вспышки 257°С) применяется там, где требуется высокая пожаробезопасность - в жилых, служебных, некоторых производственных помещениях.

Для улучшения свойств трансформаторного масла российский производитель трансформаторов ОАО "Уралэлектротяжмаш" использует смесь из минерального трансформаторного масла и Midel 7131. Этой фирмой изготавливаются трансформаторы, полностью заполненные Midel 7131.

Экологически чистый диэлектрик Софексил ТСЖ (пробивное напряжение 35 кВ, температура вспышки 300°С) является пожаробезопасным. В условиях сурового российского климата явным преимуществом Софексил ТСЖ является низкая температура застывания -75°С. Температура застывания стандартного трансформаторного масла -45°С. Недостаточно низкая температура застывания масла может привести к перегреву и повреждению трансформатора при его запуске в суровых климатических условиях (Сибирь, районы крайнего Севера).

Трансформаторы с экологически чистыми жидкими диэлектриками дороже традиционных масляных трансформаторов, но дешевле сухих трансформаторов и успешно конкурируют с последними в части пожарной безопасности в распределительных сетях 6...35 кВ.

Поделиться: