Обмотка возбуждения машин постоянного тока. Способы возбуждения машин постоянного тока

7.1. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИЯ

Два неподвижных полюса N и S создают магнитный поток. В пространстве между полюсами помещается стальной сердечник в виде цилиндра (рис. 7.1.1).

На наружной поверхности цилиндра помещен виток медной проволоки abcd, изолированный от сердечника. Концы его присоединены к двум кольцам, на которые наложены щетки 1 и 2. К щеткам подключена нагрузка zн.
Если вращать сердечник с частотой n в указанном на рисунке направлении, то виток abcd, вращаясь, будет пересекать магнитные силовые линии, на концах его будет наводиться ЭДС. И если к витку подключена нагрузка zн, то потечет и ток. Направление тока определится правилом "правой руки". Из рисунка видно, что направление тока будет от точек b к а и от d к с. Соответственно во внешней цепи ток течет от щетки 1 к щетке 2. Щетку 1, от которой отводится ток во внешнюю цепь, обозначим (+), а щетку 2, через которую ток возвращается в машину обозначим (-). При повороте витка на 180° проводники аb и cd меняются местами, изменяется знак потенциала на щетках 1 и 2 и изменится на обратное направление ток во внешней цепи.
Таким образом, во внешней цепи течет переменный синусоидальный ток (рис. 7.1.2).

Чтобы выпрямить переменный ток, необходимо в машине применить коллектор (рис. 7.1.3).

В простейшем случае это два полукольца и к ним припаиваются концы витков abcd. Полукольца изолирования друг от друга и от вала. При вращении в витке abcd в нем попрежнему возникает переменная ЭДС, но под каждой щеткой будет ЭДС только одного знака: верхняя щетка будет иметь всегда (+), а нижняя - всегда (-).
Кривая тока во внешней цепи будет иметь другую форму (рис. 7.1.4).



Из графика видно, что нижняя полуволна заменена верхней. Если применить не один виток, а два и присоединить их концы к коллекторным пластинам, которых теперь 4, то кривая выпрямленного тока будет иной.
При наличии нескольких витков кривая выпрямленного напряжения будет более сглаженной (рис. 7.1.5).

Машина постоянного тока конструктивно состоит из неподвижной части - статора и вращающейся - ротора. Статор имеет станину, на внутренней поверхности которой крепятся магнитные полюсы с обмотками (рис. 7.1.6).

Ротор машины чаще называется якорем. Он состоит из вала, цилиндрического сердечника, обмотки и коллектора (рис. 7.1.7).

Магнитные полюсы и сердечник якоря набираются из отдельных листов электротехнической стали. Листы покрываются изолированной бумагой или лаком для уменьшения потерь на гистерезис и вихревые токи. Коллектор набирают из медных пластин, имеющих сложную форму (рис. 7.1.8). Пластины друг от друга изолированы специальной теплостойкой прокладкой. Такая же изоляция имеется между коллектором и валом двигателя. Набор коллекторных пластин образует, цилиндр-коллектор.



К внешней поверхности коллектора прилегают токосъемные щетки, которые выполнены из спрессованного медного и угольного порошка.
Щетка помещается в металлическую обойму и прижимается к коллектору пружинами (рис. 7.1.9).

7.2. СПОСОБЫ ВОЗБУЖДЕНИЯ МАШИН ПОСТОЯННОГО ТОКА

Возбуждение - это понятие, связанное с созданием основного магнитного поля машины. В машинах с электромагнитным возбуждением основное поле создается обмотками возбуждения. Имеются конструкции, в которых возбуждение создается постоянными магнитами, размещенными на статоре.
Различают четыре схемы включения статорных обмоток: с независимым, параллельным, последовательным и смешанным возбуждением (рис. 7.2.1).



Изображения под пунктами б, в, г на рис. 7.2.1, называются схемами с самовозбуждением. Процесс самовозбуждения происходит за счет остаточной намагниченности полюсов и станины. При вращении якоря в этом, небольшом по величине, магнитном поле (Ф ОСТ = 0,02 0,03 Ф О) индуцируется ЭДС - Е ОСТ.
Поскольку обмотка возбуждения подключена через щетки к якорю, то в ней будет протекать ток. Этот ток усилит магнитное поде полюсов и приведет к увеличению ЭДС якоря. Большая ЭДС вновь увеличит ток возбуждения и произойдет нарастание магнитного потока до полного намагничивания машины.

7.3. ОБМОТКИ ЯКОРЯ МАШИНЫ ПОСТОЯННОГО ТОКА

Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии.
Обмотка якоря является замкнутой системой проводников, уложенных в пазах.
Элементом якорной обмотки является секция, которая может быть одно - или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:

т.е. она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.
Величина суммарной ЭДС:

где n - скорость вращения якоря (ротора), об/мин;
Ф - магнитный поток полюсов;
С е - постоянный коэффициент, зависящий от количества витков в секции.
Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид (рис. 7.3.1):

Расстояние между активными сторонами одной секции называется первым шагом обмотки - y 1 . Расстояние между началом второй секции и концом первой называется вторым шагом обмотки - у 2 . Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом - у. Шаги обмотки определяются числом пазов.
Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору - у к. В петлевой обмотке у к = 1. Шаг ук определяется числом коллекторных пластин.
Развернутая волновая обмотка имеет вид: (рис. 7.3.2).

Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций.
Однако шаги волновой обмотки имеют общее с петлевой определение.
Шаг по коллектору здесь значительно больше единицы (у к >> 1).

7.4. ЭДС И ЭЛЕКТРОМАГНИТНЫЙ МОМЕНТ ГЕНЕРАТОРА
ПОСТОЯННОГО ТОКА

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора, пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения I в.
Если вращать якорь c постоянной частотой n и непрерывно измерять выходную ЭДС Е, то можно построить график Е = f (I в) (рис. 7.4.1).

Эта зависимость называется характеристикой холостого хода. Она строится для режима, когда генератор не имеет внешней нагрузки, т.е. работает вхолостую.
Если подключить к генератору нагрузку, то напряжение на его зажимах будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U - напряжение на зажимах;
Е - ЭДС в режиме х.х.;
I Я - ток якоря;
R Я - сопротивление в цепи якоря.
Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора.
Уменьшение напряжения на выходе генератора связано с размагничиванием машины магнитным полем якоря, а также падением напряжения в его обмотках.
В каждой машине постоянного тока имеет место взаимодействие между током якоря I Я и магнитным потоком Ф. В результате на каждый проводник обмотки якоря действует электромагнитная сила:

где В - магнитная индукция,
I Я - ток в обмотке якоря,
L - длина якоря.
Направление действия этой силы определяется правилом левой руки.
Подставим сюда среднее значение магнитной индукции ВСР и величину тока в каждом проводнике обмотки якоря I = I Я / 2 а.
Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников обмотки N:

где - величина, постоянная для данной машины;
d - диаметр якоря;
р - число пар полюсов;
N - число проводников обмотки якоря;
а - число пар параллельных ветвей.
При работе машины в режиме генератора электромагнитный момент действует против вращения якоря, т.е. является тормозным.
Для привода генератора требуется электродвигатель мощность, которого должна покрыть все потери в генераторе:

где Р - полезная электрическая мощность генератора;
D Р Я - потери в обмотке якоря;
D Р В - потери в обмотке возбуждения;
D Р М - потери на намагничивание машины;
D Р МЕХ - механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия составляет 90-92 %.

7.5. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

В соответствии с принципом обратимости машина постоянного тока может работать как в качестве генератора, так и в качестве двигателя. Уравнение ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом направления ЭДС:

Ток в цепи якоря:

В соответствии о формулой Е а = С е Ф n частота вращения определяется выражением:

Подставим значение Е из уравнения U = Е - I Я R Я, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному напряжению и обратно пропорциональна магнитному потоку возбуждения.
Из этой формулы видно, что возможны пути регулирования частоты вращения двигателя постоянного тока:
1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети можно менять частоту вращения.
2. Включением в цепь якоря добавочного сопротивлению (R " Я = R Я + R ДОБ). Изменяя сопротивление R ДОБ, меняют частоту вращения.
3. Изменением магнитного потока Ф. Машины с постоянными магнитами не регулируются. Машины с электромагнитами позволяют регулировать поток Ф путем изменения тока возбуждения I B .
На рис. 7.5.1. показана схема включения в сеть двигателя постоянного тока.

По закону электромагнитной индукции при прохождении тока по обмотке якоря происходит взаимодействие ее проводников с магнитным полем полюсов. На каждый проводник обмотки будет действовать электромагнитная сила Р эм = В СР LI, пропорциональная магнитной индукции полюсов В, длине проводника L и току I, протекающему по проводнику.
Направление действия этой силы определяется правилом правой руки.
Не повторяя рассуждений, проведенных для генератора постоянного тока, запишем выражение для вращающего момента:

M=C M Ф I Я

где C M - коэффициент пропорциональности.
Вращающий момент у двигателей с независимым и параллельным возбуждением с увеличением нагрузки может как расти, так и уменьшаться, поскольку с ростом потребляемого тока I и размагничивания полюсов, уменьшается магнитный поток Ф.

Двигатели с последовательным возбуждением имеют отличные от вышеприведенных двигателей характеристики.
Из схемы, приведенной на рис. 7.2.1 в, видно, что магнитный поток в машине создается обмоткой возбуждения, включенной последовательно с обмоткой якоря. Следовательно, I B = I Я и выражение для вращающего момента будет иметь вид:

Последняя формула показывает, что чем больше нагрузка на двигатель, тем большим будет вращающий момент. Это обстоятельство делает двигатель с последовательным возбуждением незаменимым на электротранспорте (трамвае, троллейбусе и т.д.).
Реверсирование или изменение направления вращения двигателей постоянного тока может осуществляться изменением полярности тока либо в обмотке якоря, либо в обмотке возбуждения.

7.6. ЭЛЕКТРОМАШИННЫЕ УСИЛИТЕЛИ

Простейшим усилителем мощности является обычный генератор постоянного тока с независимым возбуждением. Коэффициент усиления машины определяется отношением тока, протекаемого в обмотке якоря, к току возбуждения:

В таком исполнении коэффициент усиления равен порядка 15 - 30.
Усилительную способность генератора можно увеличить, если использовать каскадную схему включения генераторов. В этом случае с выхода первого генератора подключается обмотка возбуждения второго, а выход со второго генератора будет превышать по мощности вход первого в 1000 и более раз.
Каскадная схема применяется редко из-за своей громоздкости и дороговизны.
Чаще используют так называемые электромашинные усилители (ЭМУ). Элек-трическая схема ЭМУ приведена на рис. 7.6.1.



Конструктивно электромашинный усилитель представляет собой коллекторную машину постоянного тока с независимым возбуждением, имеющую два комплекта щеток (продольные 1-1" и поперечные 2-2").
Ток, протекающий по обмотке возбуждения Iв, создает продольный магнитный поток Фd, направленный по оси полюсов машины. При вращении якоря на поперечных щетках 2-2" появляется ЭДС Е 2 = С n Ф d Так как они замкнуты накоротко, то в обмотке якоря появляется большой ток I 2 . Этот ток создает в обмотке якоря сильное поперечное магнитное поле реакции якоря Ф q , неподвижное в пространстве и направленное по оси щеток 2-2". Под действием магнитного потока Ф q в якорной обмотке ме-жду щетками 1-1" возникает ЭДС Е 1 = С n Ф q >>Е 2 , так как Ф q >>Ф d . При подключении к щеткам 1-1" нагрузки R н в цепи потечет ток I я превышающий ток I в в десятки тысяч раз. Электромашинные усилители применяют для автоматического управления мощными электродвигателями.


7.7. ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ

Для преобразования переменного тока в постоянный, как известно, используют выпрямители. Преобразование постоянного тока в переменный можно осуществить электромашинными преобразователями. Каскад из двух машин: (асинхронный двигатель переменного тока и генератор постоянного тока) вполне решают эту задачу.
Но бывает ситуация, когда необходимо преобразовать постоянный ток низкого напряжения в постоянный ток повышенного напряжения. Делается это в одной комбинированной машине, состоящей из двигателя и генератора постоянного тока с общей магнитной системой. Со стороны низкого напряжения это электродвигатель, а со стороны повышенного напряжения - генератор постоянного тока с независимым возбуждением.
В одних и тех же пазах якоря преобразователя заложены самостоятельные обмотки низкого и повышенного напряжения. Концы обмоток присоединены к соответствующему коллектору (рис. 7.7.1), причем обмотка повышенного, напряжения имеет значительно большее число проводников, чем обмотка низкого напряжения.
Одноякорные преобразователи широко применяются в авиационной технике, а также в общепромышленных установках, где первичным источником постоянного тока является аккумулятор.
Одноякорные преобразователи постоянного тока в трехфазный переменный отличается от рассмотренного тем, что обмотка повышенного напряжения состоит из

трех секций, смещенных друг от друга на 120°. Выводы секционных обмоток припаяны к трем контактным кольцам и с помощью токосъемных щеток переменный ток передается к потребителю.


7.8. ТАХОГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА

Тахогенераторами называют электрические машины малой мощности, работающие в генераторном режиме и служащие для преобразования частоты его вращения в электрический сигнал.
Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению являются электрическими коллекторными машинами.
Выходной характеристикой тахогенератора является зависимость величины на-пряжения на зажимах якоря U я от частоты его вращения n при постоянном магнитном потоке возбуждения Ф и постоянном сопротивлении нагрузки Rнагр
На рис. 7.8.1 показана выходная характеристика тахогенератора при различных R нагр.

7.9. МИКРОДВИГАТЕЛИ, ПРИМЕНЯЕМЫЕ В ДЕТСКОМ ТЕХНИЧЕСКОМ ТВОРЧЕСТВЕ

Разнообразие изделий детского технического творчества не позволяет остановиться на конкретных решениях.
В структурные композиции любого подвижного объекта почти всегда входит электродвигатель. Именно он преобразует электрическую энергию в механическое движение.
Разновидность электропривода модели в первую очередь зависит от источника питания.
Если модель работает автономно, то, естественно, для нее необходим и автоном-ный источник питания. Это, как правило, электрохимическая батарейка или аккумулятор.
При выборе схемы электропривода необходимо лишь согласовать напряжение электродвигателя с источником питания.
В стационарных установках используется обычная электросеть напряжением 220, 127 В. Для понижения напряжения до безопасного уровня применяются понижающие трансформаторы и иногда выпрямители переменного тока в постоянный.
Такие приборы могут не входить в конструкцию изделия и являются вспомогательными.
Ниже в табл. 7.9.1 приводится техническая характеристика наиболее применяемых в техническом творчестве электродвигателей.



Для работы электрической машины необходимо наличие маг­нитного поля. В большинстве машин постоянного тока это поле создается обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени опре­деляются способом включения обмотки возбуждения, т. е. спосо­бом возбуждения.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения , в которых обмотка возбуждения (ОВ) питается постоянным током от источ­ника, электрически не связанного с обмоткой якоря (рис. 11, а );

машины параллельного возбуждения , в которых обмотка возбуждения и обмотка якоря соединены параллельно (рис. 11, б );

машины последовательного возбуждения (обыч­но применяемые в качестве двигателей), в которых обмотка воз­буждения и обмотка якоря соединены последовательно (рис. 11, в );

машины смешанного возбуждения , в которых имеются две обмотки возбуждения – параллельная ОВ1 и после­довательная ОВ2 (рис. 11, г );

машины с возбуждением постоянными маг­нитами (рис. 11, д ).

Все указанные машины (кроме последних) относятся к маши­нам с электромагнитным возбуждением , так как маг­нитное поле в них соз­дается электрическим током, проходящим в обмотке возбуждения.

Рис. 11. Способы возбуждения машин по­стоянного тока

Начала и концы обмоток машин по­стоянного тока со­гласно ГОСТу обо­значаются: обмотка якоря – Я1 и Я2, об­мотка добавочных полюсов – Д1 и Д2, компенсационная обмотка – К1 и К2, обмотка возбуждения независимая – Ml и М2, обмотка возбуждения параллельная (шунтовая) – Ш1 и Ш2, обмотка возбуждения последовательная (сериесная) – С1 и С2.

Контрольные вопросы

1. Какие участки содержит магнитная цепь машины постоянного тока?

2. В чем сущность явления реакции якоря машины постоянного тока?

3. Почему МДС якоря, действующая по поперечной оси, вызывает размагничи­вание машины по продольной оси?

4. Как учитывается размагничивающее действие реакции якоря при расчете числа витков полюсной катушки обмотки возбуждения?

5. С какой целью компенсационную обмотку включают последовательно с об­моткой якоря?

6. Почему с увеличением воздушного зазора ослабляется размагничивающее влияние реакции якоря?

7. Какие способы возбуждения применяют в машинах постоянного тока?

8. Что называется коммутацией в М.П.Т?

9. Способы улучшения коммутации?

Лекция № 4

Генераторы постоянного тока и их основные характеристики

Основные понятия

В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Е а. При подключении к генератору нагрузки в цепи яко­ря возникает ток, а на выводах генератора устанав­ливается напряжение, определяемое уравнением на­пряжений для цепи якоря генератора:

(28.1)

– сумма сопротивлений всех участков цепи якоря: обмотки якоря r а, обмотки добавочных полюсов r д, компенсационной обмотки r к.о, последовательной обмотки возбуждения r с и переходного щеточного контакта r щ.

Якорь генератора приводится во вращение при­водным двигателем, который создает на валу гене­ратора вращающий момент М 1 . Если генератор ра­ботает в режиме х.х. (I a = 0), то для вращения его якоря нужен сравнительно небольшой момент холо­стого хода M 0 . Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.

При работе нагруженного генератора в проводах обмотки якоря появляется ток, который, взаимодей­ствуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М . В генераторе этот момент направлен встречно вра­щающему моменту приводного двигателя ПД (рис. 12), т. е. он является нагрузочным (тормозящим).

При неизменной частоте вращения (n=const ) вра­щающий момент приводного двигателя М 1 уравнове­шивается суммой противодействующих моментов: мо­ментом х.х. М 0 и электромагнитным моментом М, т. е.

M 1 = M 0 + M.(28.3)

Выражение (28.3) – уравнение моментов для генератора при n = const. Умножив члены уравнения (28.3) на угловую скорость вращения якоря w, получим уравнение мощностей:

Р 1 =Р 0 + Р эм, (28.4)

где Р 1 = М 1 w – подводимая от приводного двигателя к генератору мощность (меха­ническая); Р 0 = М 0 w – мощ­ность х.х., т.е. мощность, подводимая к генератору в режиме х.х. (при отключен­ной нагрузке); Р эм = Мw – электромагнитная мощность генератора.

Рис. 12. Моменты, действующие в генераторе постоянного тока.

Согласно (25.27), получим

Р эм = Е а I а

или с учетом (28.1)

где P 2 – полезная мощность генератора (электрическая), т. е. мощ­ность, отдаваемая генератором нагрузке; Р эа – мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря.

Учитывая потери на возбуждение генератора Р э.в ,получим уравнение мощностей для генератора постоянного тока:

P 1 = P 2 + P 0 + P эа + P э.в (28.6)

Следовательно, механическая мощность, развиваемая при­водным двигателем Р 1 , преобразуется в генераторе в полезную электрическую мощность Р 2 , передаваемую нагрузке, и мощ­ность, затрачиваемую на покрытие потерь (Р 0 +Р эа + Р э.в ).

Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии n = const. Рассмотрим основные характеристики генераторов посто­янного тока.

Характеристика холостого хода – зависимость напряжения на выходе генератора в режиме х.х. U 0 от тока возбуждения I в :

U 0 = ¦ (I в) при I = 0 и n = const.

Нагрузочная характеристика – зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбу­ждения I в :

U = ¦ (I в) при I = 0 и n = const.

Внешняя характеристика – зависимость напряжения на вы­ходе генератора U от тока нагрузки I :

U = ¦(I в) при r рг = const и n = const,

где r рг – регулировочное сопротивление в цепи обмотки возбуж­дения.

Регулировочная характеристика – зависимость тока возбуж­дения I в от тока нагрузки I при неизменном напряжении на выходе генератора:

I в = ¦(I) при U= const и n = const.

Вид перечисленных характеристик определяет рабочие свой­ства генераторов постоянного тока.

(МПТ) - это общий термин, объединяющий генераторы (ГПТ) и двигатели (ДПТ). Как правило, говоря об МПТ, имеют в виду биполярные машины, у которых имеются чередующиеся «северные» и «южные» магнитные полюсы возбуждения и механический или электронный коммутатор тока вращающейся обмотки якоря с одним единственным кольцевым полюсом (в отличие от униполярных машин). Мы также будем придерживаться этого принципа.

Классификация МПТ

В электромашиностроении и теории электромашин принято разделять МПТ на устройства с явно и с неявно выраженными полюсами возбуждения, с цилиндрической или многогранной станиной, с возбуждением постоянным током или постоянными магнитами, с механическим коммутатором-коллектором на якоре или бесконтактные. Назначение машин постоянного тока разделяет их на общепромышленные и специализированные. Среди последних можно назвать, например, тяговые ДПТ, используемые в рельсовом транспорте. Выделяются также металлургические ДПТ, в особенности двигатели для прокатных станов и т. д.

Как известно, обмотки машин постоянного тока разделяются на обмотки возбуждения (ОВ) и якоря (ОЯ). Первые служат для возбуждения магнитного поля устройства, а вторые - для отбора мощности от питающей электросети в режиме двигателя или для питания электрической нагрузки в режиме генератора. Существуют еще и обмотки дополнительных полюсов, используемые для облегчения процесса коммутации.

Электрические машины постоянного тока независимо от того, являются ли они генераторами или двигателями, могут быть классифицированы на основе схем соединения их обмоток возбуждения и якоря. Они могут составлять единую электрическую цепь или же вообще не иметь электрической связи (независимое возбуждение). Этот принцип классификации делит МПТ на два основных типа. Вы поймете дальнейшую их классификацию из представленной ниже схемы.

Устройство машины постоянного тока

ГПТ может использоваться как ДПТ без каких-либо конструктивных изменений. Конечно, промышленностью выпускаются машины, предназначенные для работы в качестве двигателей, и машины, являющиеся генераторами. Однако отличия между ними состоят в конструкции отдельных частей, и на этапе общего ознакомления могут быть проигнорированы. Следовательно, далее будем рассматривать устройство машины постоянного тока в общем, без привязки к режиму ее работы.

Ниже на рисунке показан поперечный разрез простой МПТ с двумя парами явно выраженных полюсов. Конструкция ее содержит две основные части: статор и якорь. Рассмотрим, из каких деталей они состоят.

Статор содержит станину, а также главные и находящиеся между ними дополнительные полюсы (на рисунке не показаны).

Станина - это внешняя конструктивная оболочка МПТ. Она бывает литой из чугуна (у машин старых конструкций) или сварной из толстого листа стали. Станина механически прочно скрепляет всю сборку МПТ. Кроме того, она служит магнитопроводом для магнитного потока, производимого главными полюсами.

Последние прикреплены к станине с помощью винтов или сварки. Основное их назначение - нести катушки обмотки возбуждения, намотанные на них и соединенные последовательно между собой таким образом, чтобы магнитная полярность полюсов чередовалась, т. е. после «северного» полюса следовал бы «южный» и т. д.

Полюсные наконечники (башмаки), являющиеся расширением главных полюсов, служат двум целям: для предотвращения соскальзывания катушек и для равномерного распределения поля возбуждения на большей части окружности воздушного зазора.

Якорь машины постоянного тока состоит из сердечника с обмоткой, втулки и вала. Сердечник - это стальной каркас цилиндрической формы, сложенный из тонких электрических листов стали, покрытых с обеих сторон электроизоляционным лаком. Это делается для предотвращения появления вихревых токов, стремящихся замкнуться в толще сердечника. В пазах его уложены секции петлевой или волновой обмотки якоря, коллектор машины постоянного тока и щетки. Обмотку якоря нужно присоединить к внешней электросети постоянного тока. Но нельзя непосредственно соединить выводы обмотки с сетевым вводом, потому что она вращается. Поэтому между сетью и обмоткой якоря установлен коммутатор-коллектор, представляющий собой множество изолированных друг от друга пластин из меди, образующих внешнюю цилиндрическую поверхность, разделенную изоляционными дорожками. Неподвижные контактные щетки скользят по ней, когда якорь с коллектором вращаются. Таким образом неподвижные щетки физически соприкасаются с вращающейся обмоткой якоря, а с их помощью уже можно выполнить подключение к внешней сети машины постоянного тока.

Развитие конструкций МПТ

Первые промышленные образцы МПТ появились в 70-х гг. 19 в. Поначалу они имели кольцевой якорь с тороидальной (граммовской) обмоткой. После изобретения барабанного якоря они приобрели законченный вид, примерно соответствующий вышеприведенному рисунку. Однако конструкция машин постоянного тока во второй половине 20 в. претерпела довольно сильные изменения. Прежде всего они коснулись статора. Вместо явно выраженных главных полюсов стали применять неявнополюсную конструкцию. В ней сосредоточенную катушку возбуждения каждого главного полюса заменили несколько меньшие по размерам катушки, расположенные в пазах шихтованного статора, который имеет прямоугольную или многогранную форму, как на рисунке ниже. В тех же пазах статора размещают и компенсационную обмотку, о которой будет сказано далее. В результате конструкция машин постоянного тока стала намного легче.

В связи с развитием управляемого асинхронного электропривода некоторые специалисты высказывают мнение о скором вытеснении асинхронными двигателями ДПТ из традиционных для них областей применения, таких как тяговый электропривод или привод металлургических механизмов. Однако пока еще рано говорить об этом как о свершившемся факте.

Общий принцип образования обмотки якоря

Любая из обмоток якоря является замкнутой сама на себя непрерывной электрической цепью, состоящей из последовательно соединенных секций (катушек). В простейшем случае секция может представлять просто один виток с двумя пазовыми проводниками или же быть многовитковой. Пазовые стороны секции всегда разнесены на расстояние, чуть меньшее полюсного деления - части окружности якоря, приходящейся на один главный полюс. Поэтому они в каждой из секций всегда находятся под главными полюсами противоположной полярности. В единую замкнутую цепь секции соединяются на пластинах коллектора. Способ же этого соединения и определяет тип обмотки. Рисунок ниже поясняет принцип образования обмотки якоря машины постоянного тока из шести многовитковых секций, соединяемых на пластинах коллектора.

В положении, показанном на рисунке, щетки разделяют обмотку якоря на две параллельные ветви: верхнюю, в которую входят секции L 1, L 2 , L 3 , и нижнюю, состоящую из секций L 4 , L 5 , L 6 . Число таких ветвей зависит от типа обмотки якоря, но оно всегда четное и не может быть меньше двух.

Петлевые и волновые обмотки якоря

Это два основных типа обмоток, каждый из которых имеет несколько разновидностей. Мы рассмотрим их простейшие варианты. Слева на рисунке ниже показана форма секций, из которых состоит простая петлевая обмотка якоря машин постоянного тока. Как можно увидеть, такая же форма секций характерна для волновой обмотки.

В первом варианте один (начальный, стартовый) вывод каждой двухвитковой секции подключен к i-й пластине коллектора, а второй (конечный, завершающий) вывод соединен на соседней (i+1)-й пластине коллектора с начальным выводом следующей секции (см. рисунок выше). Таким образом, выводы каждой секции присоединены к двум рядом расположенным пластинам, а сама секция, состоящая из двух пазовых сторон и двух лобовых частей по форме напоминает петлю (отсюда и название обмотки).

Секция волновой обмотки имеет выводы, присоединенные не к соседним пластинам коллектора, а к разнесенным на определенный шаг, называемый шагом обмотки по коллектору у к. Для простой петлевой обмотки у к =1, а для простой волновой - у к =(К±1)/р, где К - число пластин коллектора, р- число пар главных полюсов. Как видно из рисунка, вследствие такого способа соединения секции приобретают форму, похожую на полуволну синусоиды, что и обусловило название обмотки.

Принцип действия в режиме генератора

Согласно первоначальной трактовке явления электромагнитной индукции в движущемся проводнике, данной еще Фарадеем, когда он пересекает при движении силовые линии магнитного поля, в нем наводится ЭДС. Следуя этому принципу, можно объяснить причину наведения ЭДС в активных проводниках (тех, что уложены в пазы) обмотки якоря МПТ. Действительно, они движутся под главными полюсами, пересекая при этом линии поля. Поскольку последние непрерывны, каждый проводник якоря независимо от того, расположен ли он на его поверхности (так было в первых конструкциях МПТ) или в пазах, пройдя под полюсом, пересечет все исходящие из его наконечника линии поля. Направление действия индуцированной в проводнике ЭДС можно определить, применяя правило правой руки, которое иллюстрирует рисунок ниже.

Пазовые проводники якоря попарно входят в состав витков катушек его обмотки. Сумма ЭДС витков дает ЭДС катушки. Неподвижные щетки делят всю обмотку якоря на несколько (минимум две) параллельных ветвей. Сумма ЭДС всех катушек, входящих в параллельную ветвь, дает ЭДС всей обмотки якоря МПТ. Таким образом, принцип действия машин постоянного тока при работе генератором можно сформулировать так: якорь возбужденной машины вращается приводным двигателем, в его обмотке наводится ЭДС, которая вызывает протекание постоянного тока якоря в замкнутой электроцепи, включающей обмотку, коллектор, щетки и внешнюю сеть с нагрузкой.

При наличии тока якоря на него начинает действовать тормозящий электромагнитный момент. Он создает нагрузку для приводного двигателя. Чем больше электрическая мощность нагрузки генератора, тем сильнее тормозится его якорь и тем выше нагрузка приводного двигателя. При этом согласно закона сохранения энергии в последнем расходуется столько топлива на приведение якоря генератора во вращение, чтобы высвобожденная при его сгорании химическая энергия за вычетом энергетических потерь в двигателе и генераторе равнялась бы энергии, отбираемой электрической нагрузкой от машины постоянного тока.

Устройство и принцип действия в режиме двигателя

В этом режиме ток якоря подается в его обмотку от питающей электросети при пуске. На пазовые проводники якоря с током, находящиеся под главными полюсами, действуют силы Ампера. Направление их определяется по правилу левой руки, которое иллюстрирует рисунок ниже. Их сумма создает вращающий электромагнитный момент якоря (в отличие от тормозящего в режиме генератора), и он приходит во вращение.

Но во вращающихся пазовых проводниках, как и в генераторном режиме, наводятся ЭДС, которые дают суммарную ЭДС обмотки якоря. Она действует встречно напряжению питающей сети, частично уравновешивая его. Так выглядит принцип действия машин постоянного тока при работе двигателя. При этом согласно закона сохранения энергии от питающей электросети двигателем отбирается столько электроэнергии, сколько требуется механической энергии для приведения в движение присоединенного механизма с учетом энергетических потерь (электрических и механических). Иначе говоря, чем сильнее нагружен двигатель механически, т. е. чем больше вес и момент инерции приводимых им в движение механизмов или чем больше момент сопротивления среды, препятствующий их движению, тем большее количество электроэнергии потребляется двигателем от сети.

О физическом механизме наведения ЭДС в проводниках обмотки якоря МПТ

Следует отметить, что физикам-теоретикам не нравится вышеприведенный (и популярный в технической литературе) физический механизм наведения ЭДС, т. к. силовые линии магнитного поля - это всего лишь умозрительный образ, придуманный Фарадеем для его описания. Никаких подтверждений действительного существования их как реальных физических объектов не существует.

Альтернативным механизмом наведения ЭДС в движущемся пазовом проводнике обмотки якоря МПТ является воздействие на электроны внутри него силы Лоренца, пропорциональной магнитной индукции в месте расположения проводника. Однако и здесь имеется противоречие, заключающееся в том, что внутри пазов якоря магнитная индукция исчезающе мала, а на величине ЭДС проводников это не сказывается. Поэтому вместо индукции в пазе в формулу подставляют индукцию в воздушном зазоре, что, конечно же, неправильно, но дает результат, близкий к наблюдаемому на практике.

Выходом из данной коллизии является переход к описанию магнитного поля не посредством вектора магнитной индукции, а при помощи векторного магнитного потенциала. Активным сторонником такого подхода был выдающийся русский электротехник К. М. Поливанов. Более подробно с этой проблемой можно познакомиться в работах автора.

Магнитное поле МПТ при нагрузке

В нагруженной МПТ имеется два вида магнитных потоков: поток ОВ и поток ОЯ, создаваемые токами этих обмоток. Силовые линии первого из них направлены вдоль осей пары полюсов, через которые он замыкается, как это показано на фигуре 1 на рисунке ниже. Такой поток возбуждения называется продольным. Если полюсов в МПТ больше двух, то в воздушном зазоре под наконечником каждого из них это поле также является продольным.

Силовые линии потока ОЯ замыкаются поперек оси полюсов, поэтому применительно к МПТ говорят о поперечном поле якоря, которое показано на фигуре 2 на том же рисунке.

Поток якоря суммируется с потоком возбуждения, образуя результирующий поток. В этом проявляется реакция якоря машины постоянного тока, заключающаяся в воздействии поперечного поля на продольное поле возбуждения, силовые линии которого при этом искажаются, сгущаясь возле одного края полюса и разреживаясь возле другого. В ГПТ сгущение силовых линий поля, т. е. его усиление относительно поля возбуждения, происходит под набегающим на якорь краем полюса, а в ДПТ - под сбегающим, как показано на фигуре 3.

Побочные следствия реакции якоря

Вследствие явления магнитного насыщения стали результирующее поле под краем полюса, где оно усиливается, не может увеличиться в той же степени, в которой ослабляется под противоположным краем. Поэтому результатом данного эффекта является общее снижение магнитного поля нагруженной машины. В случае генератора ослабление поля уменьшает генерируемое напряжение.

Реакция якоря машины постоянного тока искажает пространственную картину силовых линий поля, следовательно, изменяется положение магнитной нейтрали (МН) - в двухполюсной МПТ она перпендикулярна силовым линиям потока возбуждения и совпадает с геометрической нейтралью ГН. Щетки должны быть размещены на МН, в противном случае это приведет к искрению под ними. Таким образом, в связи с реакцией якоря трудно определить точное положение МН. Впрочем, для этого существуют апробированные на практике способы.

Вторым негативным следствием данного эффекта, которое существенно ухудшает эксплуатационные характеристики машины постоянного тока, является повышение максимального напряжения между рядом расположенными пластинами. Посмотрите еще раз на схему простой петлевой обмотки. Если стороны некоторой ее секции находятся одновременно под краями двух соседних разноименных главных полюсов с увеличенным из-за реакции якоря полем, то индуктируемое в этой секции напряжение, а следовательно, и напряжение между парой соседних пластин коллектора может существенно превысить его величину, когда реакция якоря отсутствует, т. е. при холостом ходе. Причем такое превышение наступает обычно сразу на нескольких участках коллектора, расположенных в зонах увеличенного поля. В результате может возникнуть такое явление, как круговой огонь на коллекторе, которое может его полностью разрушить. Поэтому без специальных конструктивных способов подавления реакции якоря работа машины постоянного тока, имеющей среднюю и большую мощность, практически невозможна.

Способы борьбы с реакцией якоря

Наиболее простым и первым из появившихся способов стало увеличение воздушного зазора от середины к краям наконечников полюсов, т. е. выполнение расходящегося зазора. При этом увеличивалось магнитное сопротивление потоку реакции якоря, и воздействие его на поле возбуждения уменьшалось. Но сопротивление росло и для потока возбуждения, что вынуждало увеличивать габариты катушек на главных полюсах.

Для ослабления потока якоря при изготовлении главных полюсов используется электротехническая сталь с магнитной анизотропией ее свойств (магнитной проницаемости) вдоль и поперек оси полюсов. Полюсы из такой стали хорошо проводят продольный поток возбуждения и плохо - поперечный поток якоря. Однако такая сталь очень дорога, а ее свойства сильно зависят от температуры и изменяются с течением времени.

Наконец был найден радикальный способ борьбы с реакцией якоря машины постоянного тока. Устройство и принцип действия ее при этом почти не изменились, но добавилась еще одна обмотка - компенсационная. Она размещается в пазах, выполняемых в наконечниках главных полюсов (или в пазах статора вместе с обмоткой возбуждения при неявнополюсной конструкции), как показано на рисунке ниже, и присоединяется последовательно к обмотке якоря, т. е. по ним проходит одинаковый ток.


Однако направление обтекания им витков компенсационной обмотки выбрано таким образом, что возбуждаемый ею магнитный поток направлен навстречу потоку реакции якоря и компенсирует его.

Все современные электрические машины постоянного тока, имеющие среднюю и большую мощность, оснащаются такой обмоткой.

2. Генераторы независимого, параллельного и смешанного возбуждения и внешние характеристики.

1. Классификация машин постоянного тока по способу возбуждения.

Для работы генератора необходимо наличие в нем магнитного поля. В зависимости от способа создания магнитного поля все генераторы постоянного тока (ГПТ) делят на:

1 - генераторы с независимым возбуждением:

Электромагнитные, где поле создается специальной обмоткой,

Магнитоэлектрические, где поле создается с помощью постоянных

магнитов;

2 - генераторы с самовозбуждением:

Параллельного возбуждения,

Последовательного возбуждения,

Смешанного возбуждения.

Свойства генераторов анализируют с помощью характеристик, устанавливающих зависимости между основными величинами, определяющими работу генератора. Таковыми являются:

Напряжение на зажимах, U , B;

Ток нагрузки, I , A;

Ток возбуждения, I в , А;

Полезная электрическая мощность, Р , Вт;

Частота вращения якоря n , мин.

Номинальные значения этих величин входят в паспортные данные всех генераторов постоянного тока. Можно указать и ряд дополнительных величин, например, число пар полюсов Р , сопротивления обмоток R я , R ш , R c и т.п. Основную группу характеристик снимают при неизменной частоте вращения якоря.

Основными характеристиками ГПТ являются:

1. Характеристика холостого хода U o = f(I в ); I = 0;

(U o - напряжение холостого хода генератора).

2. Внешняя характеристика U = f(I); R в = 0;

(R в - сопротивление реостата в цепи возбуждения).

3. Регулировочная характеристика I в = f(I); U = U ном ;

(U ном - номинальное напряжение генератора).

2. Генераторы независимого, параллельного и смешанного возбуждения

и внешние характеристики.

При независимом возбуждении (рис.38) обмотка возбуждения (ОВ) питается от независимого источника постоянного тока.


Независимое возбуждение генераторов применяют в случае необходимости регулирования в широких пределах тока возбуждения I в и напряжения на зажимах машины. У генераторов с независимым возбуждением

I я = I н

Генераторы с самовозбуждением имеют ОВ, питаемые от самого генератора.

Генератор с параллельным возбуждением (рис.39)

I я = I н + I в


У мощных машин I в составляет 1-3% тока якоря I я , у малых машин до нескольких десятков процентов.

Генератор со смешанным возбуждением (рис.40)


Основной обычно является параллельная обмотка. Последовательная обмотка подмагничивает машину при увеличении тока нагрузки , чем компенсирует падение напряжения в обмотке якоря и размагничивающее влияние реакции якоря.

I я = I н + I в .

Способ возбуждения генератора определяет его свойства и характеристики.


Характеристика холостого хода генератора с независимым возбуждением имеет вид кривой намагничивания сердечника В = f(H) и повторяет ее петлю гистерезиса (кривая 1 - восходящая ветвь, 2 - нисходящая ветвь). Е ост соответствует Ф о - остаточному магнитному потоку.

Внешняя характеристика ГПТ с независимым возбуждением имеет падающий характер, т.к. вследствие реакции якоря магнитный поток Ф ослабляется при увеличении I я . Следовательно уменьшается Е , что вызывает дополнительное снижение U.

U = E - R я I я .

Регулировочная характеристика имеет восходящий характер, т.к. чтобы поддержать U = const при любой нагрузке, необходимо при увеличении I я увеличить Е так, чтобы

U = E - R я I я = const.

Величина Е регулируется с помощью изменения I в (а следовательно Ф ).

У генераторов с параллельным возбуждением характеристики холостого хода и регулировочная практически не отличаются от соответствующих характеристик ГПТ с независимым возбуждением.




Внешняя характеристика по сравнению с характеристикой ГПТ с независимым возбуждением пойдет ниже, т.к. уменьшение U будет вызываться не только падением напряжения на якорной обмотке (R я I я ) и реакцией якоря, но и еще уменьшением Ф, т.к. I в = U / R в . Более того при достижении Iя величины I кр = (2 - 3) Iя ном ток якоря начнет уменьшаться с уменьшением , т.к. магнитная цепь будет ненасыщенной и уменьшение U будет происходить быстрее, чем уменьшение R н . При R н = 0 (режим К.З.) I я обычно не превышает номинального значения и определяется величиной Е ост.


Для ГПТ со смешанным возбуждением характеристика холостого хода совпадает с характеристикой холостого хода ГПТ с параллельным возбуждением. Вид внешней характеристики определяется способом включения обмоток возбуждения ГПТ. При согласном включении обмоток параллельной (шунтовой) и последовательной (сериесной) магнитные потоки суммируются, внешняя характеристика пойдет выше характеристики ГПТ с параллельным возбуждением, т.к. уменьшение Фш и реакция якоря будет компенсироваваться увеличением Фс. Подбором числа витков обмоток можно добиться равенства


Uхх = Uном, что позволит обеспечить стабильность напряжения.

При встречном включении обмоток Ф = Ф ш - Ф с и характеристика получается круто падающей. Достоинством ГПТ со встречным включением обмоток является то, что он не боится коротких замыканий в цепи нагрузки.

Регулировочные характеристики ГПТ со смешанным возбуждением имеют вид, представленный на рис. .

Кривая 1 - с нормально рассчитанной последовательной обмоткой.

Кривая 2 -при усиленной последовательной обмотке.

Кривая 3 - при последовательной обмотке с меньшим числом витков.

3. Принцип самовозбуждения генераторов.

Для самовозбуждения генератора необходимы следующие условия:

Наличие остаточного магнитного потока Ф о ,

Направление остаточного магнитного потока должно совпадать с

направлением потока возбуждения,

Сопротивление цепи возбуждения не должно превышать некоторого

критического значения.


Принцип самовозбуждения в ГПТ реализуется следующим образом: магнитным потоком Фо в обмотке якоря индуктируется Ео. В обмотке возбуждения, подключенной к цепи якоря, возникает ток Iво. Ток Iво возбуждает магнитный поток Ф > Ф о. Потоком Ф индуктируется Е 1 > E o , под действием Е 1 возникает новый ток I в > I во и т.д. Процесс самовозбуждения закончится, когда ЭДС станет равна падению напряжения на сопротивлениях цепей якоря и возбуждения Е = I в R, где

R = R я + R в + R p , R я , R в , R p - сопротивления обмотки якоря, обмотки возбуждения, регулировочного реостата, включенного последовательно с обмоткой возбуждения.

Другими словами процесс самовозбуждения закончится, когда характеристика холостого хода Е = f(I в) пересечется с прямой

.

Для работы электрической машины необходимо наличие магнит­ного поля. В большинстве машин постоянного тока это поле созда­ется обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени определяются спо­собом включения обмотки возбуждения, т. е. способом возбужде­ния.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения, в которых обмотка возбуждения ОВ питается постоянным током от источни­ка, электрически не связанного с обмоткой якоря (рис. 26.8, а) ;

м а ш и н ы параллельного возбуждения, в которых: обмотка возбуждения и обмотка якоря соединены параллельно (рис. 26.8, б);

машины последовательного возбуждения, в ко­торых обмотка возбуждения и обмотка якоря соединены последова­тельно (рис. 26.8, в) ;

машины смешанного возбуждения, в которых име­ются две обмотки возбуждения - параллельная ОВ 1 и последова­тельная ОВ 2 (рис. 26.8, г );

Рис. 26.8. Способы возбуждения электрических ма­шин постоянного тока

машины с возбуждением постоянными магни­тами (рис. 26.8, д).

Все указанные машины (кроме последних) относятся к маши­нам с электромагнитным возбуждением, так как маг­нитное поле в них создается электрическим током, проходящим в обмотке возбуждения.

Начала и концы обмоток машин постоянного тока согласно ГОСТу обозначаются: обмотка якоря - Я1 и Я2, обмотка добавоч­ных полюсов - Д1 и Д2, компенсационная обмотка - К1 и К2, об­мотка возбуждения независимая - Ml и М2, обмотка возбуждения параллельная (шунтовая) - Ш1 и Ш2, обмотка возбуждения по­следовательная (сериесная) -С1 и С2.

Глава 27. Коммутация в машинах постоянного тока

§ 27.1. Причины, вызывающие искрение на коллекторе

При работе машины постоянного тока щетки и коллектор обра­зуют скользящий контакт. Площадь контакта щетки выбирают по> величине рабочего тока машины, приходящегося на одну щетку, в соответствии с допустимой плотностью тока для выбранной марки щеток. Если по какой-то причине щетка прилегает к коллектору не всей поверхностью, то возникают чрезмерные местные плотно­сти тока, приводящие к искрению на коллекторе.

Причины, вызывающие искрение на коллекторе, разделяют на механические, потенциальные и коммутационные.

Механические причины искрения - слабое давление щеток: на коллектор, биение коллектора, его эллиптичность или негладкая поверхность, загрязнение поверхности коллектора, выступание ми-канитовой изоляции над медными пластинами, неплотное закрепле­ние траверсы, пальцев или щеткодержателей, а также другие при­чины, вызывающие нарушение электрического контакта между щет­кой и коллектором.

Потенциальные причины искрения появляются при возник­новении напряжения между смежными коллекторными пластина­ми, превышающего допустимое значение (см. § 25.5). В этом слу­чае искрение наиболее опасно, так как оно обычно сопровождается появлением на коллекторе электрических дуг.

Коммутационные причины искрения создаются физически­ми процессами, происходящими в машине при переходе секций об­мотки якоря из одной параллельной ветви в другую.

Иногда искрение вызывается целым комплексом причин. Выяс­нение причин искрения следует начинать с механических, так как их обнаруживают осмотром коллектора и щеточного устройства. Труднее обнаружить и устранить коммутационные причины искре­ния.

При выпуске готовой машины с завода в ней настраивают тем­ную коммутацию, исключающую какое-либо искрение. Однако в процессе эксплуатации машины, по мере износа коллектора и ще­ток, возможно появление искрения. В некоторых случаях оно мо­жет быть значительным и опасным, тогда машину необходимо оста­новить для выяснения и устранения причин искрения. Однако не­большое искрение в машинах общего применения обычно допусти­мо. Искрение на коллекторе машины оценивают по степени искрения под сбегающим краем щетки по шкале (табл. 27.1).

Степень искрения (класс коммутации) коллекторных машин должна быть указана в стандартах на отдельные типы машин, а при отсутствии стандартов - в технических условиях на эти маши­ны. Если же степень искрения в технической документации не ого­ворена, то при номинальной нагрузке машины она не должна пре­вышать . Искрение на коллекторе создает помехи радиоприему,что приводит к необходимости принимать специальные меры к их подавлению (см. § 27.6).

При вращении якоря машины постоянного тока коллекторные пластины поочередно вступают в соприкосновение со щетками. При этом переход щетки с одной пластины (сбегающей) на другую (на­бегающую) сопровождается переключением секции обмотки из од­ной параллельной ветви в другую и изменением как значения, так и направления тока в этой секции. Процесс переключения секции из одной параллельной ветви в другую и сопровождающие его яв­ления называются коммутацией. Секция, в которой происходит ком­мутация, называется коммутирующей, а продолжительность процес­са коммутации - периодом коммутации:

Т к =(60/Кп) (b щ /b к),

где b щ - ширина щетки; К - число коллекторных пластин; п - частота вращения якоря, об/мин; b к - расстояние между середина­ми соседних коллекторных пластин (коллекторное деление).

Таблица 27.1

Степень искрения

Характеристика степени искрения

Состояние коллектора и щеток

Отсутствие искрения (темная коммутация)

Отсутствие почернения на кол-

Слабое точечное искрение под небольшой частью щетки

лекторе и нагара на щетках

Слабое искрение под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллек­тора бензином, а также следов на­гара на щетках

Искрение под всем краем щет­ки. Допускается только при крат­ковременных толчках нагрузки и перегрузке

Появление следов почернения на коллекторе, не устраняемых протиранием поверхности коллек­тора бензином, а также следов нагара на щетках

Значительное искрение под всем краем щетки с наличием вылетаю­щих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или ревер­сирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальней­шей работы

Значительное почернение на кол­лекторе, не устраняемое протира­нием поверхности коллектора бен­зином, а также подгар и разруше­ние щеток

Сложность процессов коммутации не позволяет рассмотреть коммутацию в общем виде. Поэтому для получения аналитических и графических зависимостей, поясняющих коммутацию, допускают^ что ширина щетки равна коллекторному делению; щетки располо­жены на геометрической нейтрали; электрическое сопротивление коммутирующей секции и мест ее присоединения к коллектору по сравнению с сопротивлением переходного контакта «щетка - кол­лектор» пренебрежимо мало (обычно такое соотношение указанных сопротивлений соответствует действительности).


Рис. 27.1. Переключение коммутирующей секции из одной параллельной ветви в другую

В начальный момент коммутации (рис. 27.1, а) контактная по­верхность щетки касается только пластины 1, а коммутирующая секция относится к левой параллельной ветви обмотки и ток в ней равен i a . Затем пластина 1 постепенно сбегает со щетки и на сме­ну ей набегает пластина 2. В результате коммутирующая секция оказывается замкнутой щеткой и ток в ней постепенно уменьшает­ся. В середине процесса коммутации (t =0,5T к) контактная поверх­ность щетки равномерно перекрывает обе коллекторные пластины (рис. 27.1, б). В конце коммутации (t = T K ) щетка полностью пере­ходит на пластину 2 и теряет контакт с пластиной 1 (рис. 27.1, в), а ток в коммутирующей секции становится равным -i a , т. е. по зна­чению таким же, что и в начале коммутации, а по направлению - противоположным. При этом коммутирующая секция оказалась в правой параллельной ветви обмотки.

Поделиться: