Автоматизированные и автоматические системы управления. Основные функции асу Что является целью автоматизации управления

К наиболее важным задачам, решаемым с использованием АСУ предприятием можно отнести следующие:

-Бухгалтерский учет

Это одна из первых областей применения информационных технологий и наиболее часто реализуемая на сегодняшний день задача, поскольку задачи бухучета достаточно легко формализуются.

Однако разработка систем автоматизации бухучета является достаточно трудоемкой задачей. Это обусловлено повышенными

требованиями в отношении надежности и максимальной простоты и удобства в работе.

-Управление финансовыми потоками

Необходимость решения задач управления финансовыми потоками обусловлено критичностью этой области управления предприятием к ошибкам. Неправильно построив систему расчетов с покупателями и поставщиками, можно спровоцировать кризис наличности даже при налаженной сети закупок, сбыта и хорошем маркетинге.

-Управление складом, ассортиментом, закупками

Автоматизация процесса анализа движения товаров позволяет ответить на главный вопрос – как получить максимальную прибыль при постоянной нехватке средств.

«Заморозить» оборотные средства в чрезмерных складских запасах – самый простой способ сделать любое предприятие потенциальным банкротом.

-Управление производственными процессами

Основным механизмом здесь является планирование и оптимальное управление производственным процессом.

Автоматизация решения этой задачи позволяет грамотно планировать, учитывать затраты, проводить технологическую подготовку производства, оперативно управлять процессом выпуска продукции в соответствии с производственной программой и технологией.

-Документооборот

Хорошо отлаженная система документооборота отражает реальное текущее состояние дел на предприятии и дает руководству возможность воздействовать на нее.

5. СХЕМА ВЗАИМОДЕЙСТВИЙ ОСНОВНЫХ ФУНКЦИЙ УПРАВЛЕНИЯ В ФУНКЦИОНАЛЬНОЙ ПОДСИСТЕМЕ АСУ ПРЕДПРИЯТИЕМ

Предприятие – это многоуровневая система, в которой объект управления вышестоящей системы превращается в субъект управления нижестоящей системы.

Например, начальник цеха из объекта управления директора цеха превращается в субъект управления для начальника участка (мастера). Начальник участка (мастер) из объекта управления начальника цеха сам становится субъектом управления для рабочих своего участка.

Отметим, что структура взаимодействия основных функций управления во всех подсистемах идентична и включает: планирование, регулирование, контроль, анализ, учет.

В каждой из функциональных подсистем системы управления предприятием осуществляется процесс управления. Это означает, что в ней есть управляющая часть и объект управления .

Для предприятия в целом объектом управления является производственный процесс. Роль управляющих частей на предприятии играют управленческие службы.

Взаимодействие между управляющей частью(субъектом управления) и объектом управления (управляемым процессом) происходит посредством реализации функций управления.

Можно выделить, по крайней мере, шесть таких функций:

1)- планирование;

2)- регулирование;

4)- анализ;

5)- контроль.

Схема взаимодействия основных функций управления представлена на Рис.2.

Исходные данные

(в том числе план

верхнего

Хпл.(t) ΔХ(t) Хр(t) X(t)

Учет
Хф(t)

Рис.2. Схема взаимодействий основных функций управления

в функциональной подсистеме (системе)

Планирование – это определение поведения управляемого процесса в будущем в детерминированном виде (величина Хпл.(t)).

Регулирование – обеспечение функционирования управляемых процессов в рамках заданных параметров (Хф(t) = Xпл.(t).

Контроль – это определение отклонений между запланированным и фактическим состоянием управляемого процесса в дискретные моменты времени (ΔХ(t) = Xпл.(t)- Хф(t)).

Учет – определение фактического состояния управляемого процесса в дискретные моменты времени (Хф(t)).

Анализ – это подведение итогов осуществления процесса управления за период управления, выявление факторов, которые повлияли на степень достижения запланированных результатов.

Прогнозирование – это определение на будущее вероятностных характеристик управляемого процесса.

Таким образом, планирование заключается в выработке плановой «траектории» управляемого процесса X(t) на период планирования. Учет, т.е. измерение, состоит в определении в заданные моменты времени истинного состояния процесса Xф(t). Контроль позволяет определить отклонение Хф(t) от Xпл.(t). Регулирование состоит в определении скорректированного плана Хр(t), т.е. по существу является решением задачи планирования при новых начальных условиях.

Как видим, в каждой из подсистем независимо от ее уровня реализуется функция планирования. И вообще, каждая из систем является подсистемой лишь по отношению к вышестоящей подсистеме. Поскольку функциональные подсистемы управления предприятием – часть единой системы управления, то цели функционирования подсистем должны быть согласованы. Содержание планирования в каждой из подсистем будет различным исходя из места и роли подсистемы в общей структуре системе управления предприятием.

6. ЭТАПЫ ПРИМЕНЕНИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В УПРАВЛЕНИИ ПРЕДПРИЯТИЕМ

Некоторые исследователи полагают, что каждое новое поколение автоматизированных систем и информационных технологий повышает производительность труда не менее чем в 1,5 раза.

Следует подчеркнуть, что уже к концу 40-х годов ХХ века в США 50% работающих было занято в сфере переработки информации. Темпы роста промышленного производства в десятки раз превышали аналогичный показатель в обработке информации.

Применение вычислительной техники в управлении производством началось в 50-е годы. Первый компьютер для этих целей был использован американской компанией General Electric в 1954 году. Компьютер использовался для снижения стоимости и трудоемкости работ по управлению.

В частности, автоматизировались расчеты в бухгалтерии, на складах, формировалась различного рода отчетность. В качестве программного обеспечения использовались отдельные программы.

В 60-е годы получили развитие методы, направленные на совершенствование систем принятия решений. К ним, в частности, относятся методы линейного программирования, теории расписаний, управления проектами. Появились первые пакеты прикладных программ для решения задач управления производством.

Однако, в целом перечисленные системы и экономико-математические методы применялись редко и для решения локальных задач.

К середине 60-х годов, в СССР были разработаны первые модели внутризаводского планирования.

В 70-е годы программное обеспечение для целей управления использовалось уже многими предприятиями. Была разработана концепция построения производственных автоматизированных информационных систем управления.

Цель концепции – обеспечение управленцев всех уровней информацией необходимой для решения задач управления. Наиболее важными из были: прогнозирование спроса, материально -техническое обеспечение, управление запасами, планирование , оперативное управление производством .

Одной из таких концепций была концепция «Планирование материальных потребностей» (MRP – Material Requirements Planning).

Дальнейший процесс интеграции функций управления привел к созданию формированию концепции «Планирование производственных ресурсов» (MRPII – Manufacturing Resource Planning).

В 80-е годы на первый план выход проблема создания Компьютерных интегрированных производств (CIM – Computer Integrated Manufacturing).

Для систем управления этого класса были характерны следующие признаки:

1) использование при проектировании систем управления производством концепции ERP – Enterprise Resource Planning (Планирование ресурсов предприятия);

2) Интеграция систем управления типа ERP с системами автоматизированного проектирования (САПР) (CAD – Computer-aided design) и системами автоматизации производства (АСУ ТП) (CAM - Computer-aided Manufacturing).

Примечание: в современной литературе это системы типа CAD/CAM.

В 90-е годы получают развитие системы принятия решений , экспертные системы и системы искусственного интеллекта .

Новый этап развития автоматизированных систем был связан с появление ПЭВМ. Главной особенностью этого этапа стало приближение вычислений непосредственно к рабочему месту управленца. Эти рабочие места получили название АРМ (Автоматизированное рабочее место) пользователя.

Новые технические средства и математическое обеспечение позволили сделать качественный скачек в создании дружественного пользовательского интерфейса.

В 90-е годы получил развитие процесс внедрения комплексных решений по автоматизации управления предприятиями на базе локальных вычислительных сетей, мощных систем управления базами данных (СУБД), новых технологий проектирования и разработки.

7. ТЕХНОЛОГИИ ПОСТРОЕНИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

В конце 60-х годов ХХ века, в связи с бурным развитием вычислительной техники, начались активные попытки оптимальной автоматизации и информатизации бизнеса. Создавались новые концепции построения автоматизированных систем управления и совершенствовались уже существующие.

Основными целями автоматизации производственных предприятий являлись: точный расчет себестоимости продукции, ее анализ, понижение затрат в процессе производства и повышение производительности в целом, за счет эффективного планирования производственных мощностей и ресурсов.

Результатом оптимизации этих параметров являлись понижение конечной цены готовой продукции и повышение общей производительности. Это немедленно отражалось на конкурентоспособности и рентабельности предприятия.

Алгоритмизация процессов управления предприятием является чрезвычайно сложной задачей. Ее решение наталкивается на ряд проблем:

1)какие параметры, характеризующие состояние предприятия, надо учитывать;

2)какой набор иерархических моделей наилучшим образом подходит для решения задач планирования и управления;

3)для каких целей, и каким образом наиболее эффективно модно применять экономико-математические методы;

4)как использовать методы управления проектами.

Все предприятия являются уникальными в своей финансовой и хозяйственной деятельности. Однако прогресс в разработке программных решений позволил выделить задачи общие для самых разных видов деятельности: различные отрасли промышленности, телекоммуникации, банки и т.д.

К таким задачам можно отнести:

Управление финансовыми и материальными ресурсами;

Расчеты с покупателями и поставщиками;

Управление основными фондами;

Бизнес-планирование и учет;

Бухгалтерия;

Управление кадрами и др.

В результате поиска решений в области автоматизации производственных систем в середине 60-х годов Американское общество управления производством и запасами APICS (American Production and Inventory Control Society) сформулировало ряд принципов, по которым предлагалось строить как модели предприятий, так и основные производственные процессы на них.

Примечание:

APICS основано в 1957 году и сегодня объединяет около 70000 специалистов из многих стран мира, представляющих около 20000 компаний. Среди направлений деятельности общества – распространение информационных материалов; оповещение о публикациях в области образования и переподготовки; реализация двух программ сертификации специалистов – по управлению производством и запасами (CPIM) и интегрированными ресурсами (CIRM); проведение очных и заочных конференций. Общество периодически издает словарь ”APICS’s Dictionary”, который содержит сотни терминов, относящихся к автоматизированным системам управления. На сайте APICS в Интернет представлены списки литературы по различным вопросам построения автоматизированных систем.

7.1. КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ MRP

Впервые принципы, сформулированные обществом по управлению производством и запасами были применены для решения задач планирования потребности в материалах и получили название концепции (технологии, методологии, стандарта) MRP – Планирование материальных ресурсов.

Примечания: 1. Концепция MRP и все последующие концепции построения автоматизированных систем – это формализованная совокупность понятий и процессов, с помощью которых можно описать работу предприятия. Их можно описать как набор инструкций (алгоритм): сделай это так, передай данные или материалы в таком-то виде туда, сделай запись о выполненных операциях там-то. Они интуитивно понятны любому управленцу или менеджеру.

Ценность концепций построения систем управления заключается в том, что:

1) они появились в результате анализа деятельности реально работающих предприятий;

2) их развитие происходит эволюционно, очередная концепция поглощает предыдущие;

3) они доказали свою эффективность;

4) они охватывают деятельность предприятия в целом.

2. Когда мы говорим о системе, например система типа MRP или MRP-система, то имеется в виду, что речь идет о программном продукте, в котором тем или иным образом реализованы основные положения данной концепции.

Основные положения концепции MRP формулируются следующим образом:

1)заказы снабжения и производства формируются на основе заказов реализации и производственных графиков;

2)при выполнении заказов учитываются ограничения ресурсов;

3)обеспечивается минимизация запасов на складах;

4)модель производственного процесса описывается как поток взаимосвязанных заказов.

5)выполнение заказа завершается к тому моменту, когда он необходим.

По сути, MRP-технология представляет собой алгоритм оптимального управления заказами на готовую продукцию, производством и запасами сырья и материалов, которая реализуется с помощью компьютерной системы.

MRP-системы позволяют оптимально загрузить производственные мощности, и при этом закупать именно столько материалов и сырья, сколько необходимо для выполнения текущего плана заказов и именно столько, сколько возможно обработать за соответствующий цикл производства. Тем самым планирование текущей потребности в материалах позволила разгрузить склады как сырья и комплектующих, так и склады готовой продукции.

Собственно MRP-технология является реализацией двух известных принципов JIT (Jist in Time – Вовремя заказать) и KanBan (Вовремя произвести).

В основе этой концепции лежит понятие BOM (Bill OF Material – спецификация изделия). Спецификация, за которую отвечает конструкторский отдел, показывает зависимость спроса на сырье и комплектующие в зависимости от плана выпуска готовой продукции.

При этом очень важную роль играет время. Для того, чтобы учитывать время, системе необходимо знать технологическую цепочку, т.е. последовательность операций и их продолжительность.

На основании плана выпуска продукции, спецификации (ВОМ) и технологической цепочки осуществляется расчет потребностей в материалах, привязанный к конкретным срокам.

Очевидно, что идеальная реализация концепции MRP невыполнима в реальной жизни. Например, из-за возможности срыва сроков поставок по различным причинам и возможности последующей остановки производства. Поэтому в жизненных реализациях MRP-систем на каждый такой случай предусмотрен заранее определенный страховой запас сырья и комплектующих(safety stock ) .

Объем страхового запаса определяется руководством предприятия.

Базовые элементы и функции MRP-систем можно представить следующей схемой (Рис.3)



Рис.3. Базовые элементы и функции МRP-системы

7.2. КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ MRPII

После появления концепции MRP начали активно создаваться и продаваться компьютерные программы, называемые МRP-системами, которые реализовывали ее принципы.

Однако анализ существующей ситуации в мировом бизнесе и ее развития, показал, что все большую составляющую себестоимости продукции занимают затраты напрямую не связанные с процессом и объемом производства.

На любом производственном предприятии существует набор принципов планирования, контроля и управления функциональными элементами. Такими элементами являются производственные цеха, функциональные отделы, аппарат управления и т.д.

Возникает вопрос, как создать замкнутую логическую систему, которая позволит ответить на следующие простые вопросы:

1) Что мы собираемся производить?

2) Что для этого нужно?

3) Что мы имеем в данный момент?

4) Что мы должны получить в итоге?

Одной из основ эффективной деятельности предприятия (производственного и непроизводственного) является правильно поставленная система планирования. Собственно система планирования и призвана содействовать ответам на поставленные вопросы.

Эта система должна четко отвечать на вопрос: «Что нам конкретно нужно в тот или иной момент времени в будущем?».

Для этого она должна планировать потребности в материале, производственные мощности, финансовые потоки, складские помещения и т.д., принимая во внимание текущий план производства продукции.

Возникла концепция MRPII (Manufacturing Resource Planning – Планирование производственных ресурсов).

Эта концепция является результатом развития концепции MRP.

В концепции MRP при планировании потребности в материалах производственные мощности рассматривались как неограниченные. В концепции MRPII содержится специальная функция, которая позволяет согласовать потребности в материалах с возможностями производства. Эта функция получила название CRP (Capacity Requirement Planning – Планирование производственных мощностей).

Последовательность реализации этапов работы в технологии MRPII представлена на следующей схеме (Рис. 4).



Рис. 4. Схема этапов технологии MRPII

Системы типа MRPII представляют собой интеграцию большого количества отдельных модулей. Результаты работы каждого модуля анализируются всей системой в целом, что обеспечивает ее гибкость по отношению к внешним факторам.

MRPII-система включает следующие функциональные модули:

1.Планирование развития бизнеса

2.Планирование продаж и деятельности

3.Планирование производства

4.Планирование потребностей в материалах (MRP)

5.Планирование производственных мощностей (CRP)

6.Разработка графика выпуска продукции

7.Различные системы оперативного управления производством

8.Контроль выполнения плана использования производственных мощностей

9.Контроль выполнение плана потребности в материалах

10.Осуществления обратной связи.

Структура MRPII охватывает все основные функции планирования производства сверху вниз.

Для каждого уровня планирования в MRPII характерны своя степень детализации плана, вид условий и ограничений. Эти параметры могут изменяться для каждого уровня в широком диапазоне в зависимости от характера производственного процесса, т.е. настраиваться на конкретное предприятие.

Кратко рассмотрим характеристики основных функциональных модулей MRPII-системы.

Планирование развития бизнеса. Планирование долгосрочное. План составляется с стоимостном выражении. Фактически план утверждает, что компания должна произвести и продать. Какое количество средств необходимо инвестировать в разработку и развитие продукта, чтобы выйти на планируемый уровень прибыли.

Выходным результатом работы модуля является бизнес-план.

Планирование продаж и деятельности. Оценивает, обычно в единицах готовой продукции (как правило, от 5 до 10), какими должны быть объем продаж и динамика продаж, чтобы был выполнен принятый бизнес-план. При этом производственные мощности не учитываются или учитываются укрупненно. План продаж носит среднесрочный характер.

Планирование производства. План продаж по всем видам готовой продукции преобразуется в объемный или объемно-календарный план производства видов продукции. Для каждого вида продукции формируется своя собственная программа производства. Совокупность производственных программ для каждого вида продукции и является производственным планом предприятия в целом.

В планах в качестве планово-учетных единиц выступают усредненные единицы продукции. Например, переднеприводные легковые автомобили, без уточнения их моделей.

Планирование потребностей в материалах (MRP). На основе производственной программы для каждого вида продукции определяется требуемое расписание закупки и/или внутреннего производства всех материалов и комплектующих для этих изделий.

Планирование производственных мощностей (CRP). Модуль преобразует план производства в конечные единицы загрузки рабочих мощностей (станков, рабочих, лабораторий и т.д.).

Разработка графика выпуска продукции. План производства преобразуется в график выпуска продукции. Как правило, это среднесрочный объемно-календарный план. Этот план задает количество конкретных изделий со сроками их изготовления.

Различные системы оперативного управления производством. В этом модуле формируются оперативные планы-графики. В качестве планово-учетных единиц могут выступать детали, сборочные единицы, детале-операции и т.п. Период планирования от нескольких дней до месяца.

Осуществления обратной связи. Этот модуль позволяет решать проблемы, возникающие с поставщиками комплектующих изделий, дилерами и партнерами. Обратная связь особенно необходима при изменении отдельных планов, оказавшихся невыполненными и подлежащих пересмотру.

Схематически, алгоритм работы MRPII-системы можно отобразить следующей схемой (Рис. 5).

Длительный период эксплуатации MRPII-систем позволил достичь роста эффективности работы предприятий. Однако, был выявлен ряд присущих этим системам недостатков, в том числе:

1) Ориентация системы управления предприятием исключительно на имеющиеся заказы, что затрудняет принятие решений на среднесрочную перспективу.

2) Недостаточное насыщение системы управления функциями управления затратами.

3) Отсутствие интеграции с системами управления финансами и персоналом

4) Слабая интеграция системы управления с системами автоматизации проектирования изделий (САПР) и системами автоматизации производства (АСУТП)

7.3 КОНЦЕПЦИЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ ERP

Концепция ERP (Enterprise Resource Planning – “Планирование ресурсов предприятия») появилась в начале 90-х годов и подтвердила свою жизнеспособность.

Ее появление было обусловлено необходимостью устранения недостатков присущих системам типа MRPII.

Системы этого класса в большей степени ориентированы на работу с финансовой информацией для решения задач управления предприятием с территориально распределенными ресурсами, т.е. так называемых корпораций.

Важность задач учета и управления финансами не вызывает сомнений.

Поэтому производственные функции MRPII-систем были дополнены модулями для решения трех категорий финансовых задач:

Финансовый учет;

Управленческий учет;

Управление финансами.

В соответствии с международной практикой, бухгалтерский учет включает в себя два направления:

- финансовый учет (Financial Accounting), который ориентирован преимущественно на внешних пользователей финансовой информации;

- управленческий учет (Managerial Accounting), ориентированный на принятие управленческих решений внутри предприятия.

В части финансового учета ERP-системы обеспечивают учет операций с дебиторами и кредиторами, материально-производственных запасов, основных средств и нематериальных активов (с начислением амортизации), учет производственных операций и другие функции бухгалтерского учета.

ERP-системы обеспечивают ведение бухгалтерского учета не только в соответствии с национальным законодательством, но и позволяют составлять отчетность в соответствии с международными стандартами МСФО (IAS) и GAAP.

Кроме этого, ERP-система позволяет автоматизировать бухгалтерский документооборот и отчетность.

Управленческий учет (Managerial Accounting) ориентирован, прежде всего, на внутренних пользователей, включая руководителей предприятия.



нет нет

да да



Рис. 5. Схематический алгоритм работы MRPII-системы

Отметим, что если правила финансового учета и финансовой отчетности регламентируются законодательством, то методология управленческого учета определяется самим предприятием.

С точки зрения ERP-системы, предприятие состоит из некоторого числа производственных цехов, каждый из которых включает в себя несколько рабочих центров. Каждый из рабочих центров может выполнять несколько технологических операций.

Прямые материальные затраты (сырье, материалы, комплектующие и т.д.) учитываются на основе спецификации изделия.

Накладные расходы подлежат распределению между производимыми изделиями на основе баз распределения и ставок поглощения.

Современные ERP-системы способны поддерживать маржинальный метод учета косвенных затрат и методфункционально-стоимостного учета.

Управление финансами. Одна из основных задач финансового менеджера – обеспечить ликвидность предприятия, чтобы предприятие в любой момент времени было способно выполнить свои финансовые обязательства.

Возможности ERP-систем в части регулирования денежных потоков основаны на том, что в системе имеется вся необходимая для этого информация, включая детали расчетов с поставщиками, заказчиками и персоналом.

В ERP-системах добавлены механизмы управления транснациональными корпорациями, включая поддержку нескольких часовых поясов, языков, валют, систем бухгалтерского учета и отчетности.

Эти отличия в меньшей степени затрагивают логику и функциональность систем, а в большей степени определяют их инфраструктуру (интернет/интранет) и масштабируемость – до нескольких тысяч пользователей.

При этом резко возрастают требования к надежности, гибкости и производительности программного обеспечения и вычислительных платформ, на которых реализуются системы.

ERP-система не может решить всех задач управления предприятием и является как бы основой (хребтом), на базе которой выполняется интеграция с другими приложениями уже используемыми на предприятии (например, системами автоматизации проектирования, технологической подготовки производства, управления технологическими процессами и др.).

В новых системах ERP больше внимания уделяется средствамподдержки принятия управленческих решений .

Системы типа ERP пополняются следующими функциональными модулями:

· прогнозирования;

· управления проектами и программами;

· ведения информации о составе продукции;

· ведения информации о технологических маршрутах;

· управления затратами;

· управления финансами;

· управления кадрами.

Прогнозирование . Это оценка будущего состояния или поведения внешней среды или элементов производственного процесса.

Цель прогнозирования – оценить требуемые параметры в условиях неопределенности. Прогнозирование может носить как самостоятельный характер, так и предшествовать планированию.

Управление проектами и программами . В производственных системах, предназначенных для выпуска сложной продукции, собственно производство является одним из этапов полного производства.

Ему предшествуют проектирование, конструкторская и технологическая подготовка. Для сложной продукции характерны: большая длительность цикла производства; большое количество смежников; сложность внутренних и внешних связей.

Из этого и следует необходимость управления проектами и программами в целом и включение соответствующих функций в систему управления.

Ведение информации о составе продукции . Эта часть системы управления обеспечивает управленцев и производственников информацией требуемого уровня о продукции, комплектующих изделиях, сборочных единицах, деталях, материалах, а также об оснастке и приспособлениях. Эта информация используется также при планировании потребностей в материальных ресурсах.

Ведение информации о технологических маршрутах . Для решения задач оперативного управления производством необходима информация о последовательности операций, входящих в технологические маршруты, длительности операций и количестве исполнителей или рабочих мест, требуемых для их выполнения.

Управление запасами . Эта подсистема системы управления оценивает работу производственных и других подразделений с точки зрения затрат. Здесь выполняются работы по определению плановых и фактических затрат. Задача данной подсистемы – обеспечить связь между управлением производством и управлением финансовой деятельностью. Это обеспечивается путем решения задач планирования, учета, контроля и регулирования затрат.

Данная информация используется для выработки управленческих решений, оптимизирующих экономические показатели предприятия.

Управление финансами . В этой подсистеме решаются задачи управления финансовой деятельностью предприятия. Практически во всех зарубежных системах в нее входят четыре модуля:

1. Главная бухгалтерская книга;

2. Расчеты с заказчиками;

3. Расчеты с поставщиками;

4. Управление основными средствами.

Управление кадрами . В данной подсистеме решаются задачи управления кадровыми ресурсами предприятия, связанные с набором, штатным расписание, переподготовкой, продвижением по службе, оплатой и т.п.

Таким образом, ERP является улучшенной модификацией систем типа MRPII.

Цель системы - интегрировать управление всеми ресурсами предприятия, а не только материальными.

Такое расширение функций в концепции ERP с одной стороны приводит к повышению эффективности управления предприятием, а с другой стороны, увеличивает масштабы системы и ее сложность.

В концепции ERP решение о включении изделия в график выпуска продукции может приниматься не только на основе реально имеющемся спросе, но и основе прогноза спроса.

Это расширяет диапазон применения системы управления и делает ее более гибкой и оперативной к изменениям внешней среды.

Среди преимуществ ERP-систем можно выделить:

1. Снижение себестоимости продукции за счет увеличения эффективности управления;

2. Увеличение выхода продукции на рынок;

3. Улучшение качества продукции и снижение брака.

В то же время ERP-системы имеют и недостатки: функции таких систем ограничены производством и администрированием. В системе не представлены функции продаж, маркетинга и инновационные механизмы, реагирование на изменения рынка осуществляются с запаздыванием, эффективность операций может быть скопирована и улучшена конкурентами.

На протяжении 1994-1996 годов объем продаж ERP-систем возрастал примерно на 40% в год.

Новые идеи и методы ERP

К середине 90-х годов некоторые из положений концепции ERP входят в противоречие с требованиями к управлению в динамических производственных системах. Заказчики продукции требуют как можно меньшей длительности выполнения заказов в сочетании с высокой точностью выдерживания сроков. Часто эти сроки измеряются уже не днями и неделями, а часами и минутами.

Кроме этого, все отчетливее проявляется такое требование к системам управления, как сочетание массового характера производства с индивидуальным исполнением изделий (mass customization).

Можно выделить следующие направления совершенствования концепций построения автоматизированных систем управления предприятиями:

1. Повышение степени детализации при планировании мощностей, что позволяет принимать более обоснованные плановые решения;

2. Появление новых информационных технологий, позволяющих одновременно повышать степень детализации и решать в реальном масштабе времени задачи анализа и моделирования;

3. Рассмотрение задач планирования с учетом ограничений на доступные материальные ресурсы и мощности;

4. Формирование плановых решений одновременно для многих заводов (предприятий);

5. Улучшение обратных связей в виде задач учета фактического состояния процессов за счет повышения точности и оперативности;

6. Широкое применение методов оптимизации плановых решений;

7. Динамический подход к информации о производственных циклах.

Hазвитие идей, методов и средств управления предприятиями привело к появлению технологий нового поколения. Это технология APS (Advanced Planning and Scheduling) – «Синхронноепланирование и оптимизация»).

Технология APS обеспечивает синхронное планирование потребности в материалах и мощностях. В процессе планирования имеющиеся мощности с учетом всех фактических ограничений, известных на момент планирования, сопоставляются с текущими расчетными значениями рабочей загрузки. В итоге производственные планы составляются с высокой оперативностью. Появляется возможность определить реальные сроки выполнения заказа уже в момент его приема, а затем контролировать соблюдение этих сроков. Система дает возможность составить точный план выпуска с учетом всех производственных ресурсов: оборудования, персонала, сырья, инструментов, необходимых для поставки продукции точно в обещанный срок.

Эта технология включает в себя две части:

Планирование производства и снабжения;

Диспетчеризацию производства.

Первая часть технологии похожа на алгоритм MRPII. Существенное отличие заключается в том, что в технологии APS согласование потребностей в материалах и производственных мощностей происходит не итерационно, а синхронно, что сокращает время планирования.

Это особенно актуально для позаказного производства, а также в условиях жесткой конкуренции в сроках выполнения заказа и необходимости точного соблюдения этих сроков.

Вторая часть технологии – диспетчеризация производства обеспечивает возможность согласования учета различного рода ограничений с элементами оптимизации.

Обычно ASP-системы представляют собой объединение четырех взаимосвязанных процессов:

· Планирование производственной цепочки;

· Планирование деятельности предприятия;

· Производственное планирование;

· Оценка возможности выполнения.

Автоматизированные системы управления (АСУ)

Автоматизированная система управления (АСУ) и система автоматического управления (САУ) - комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия.

АВТОМАТИЗИРОВАННЫЕ И АВТОМАТИЧЕСКИЕ СИСТЕМЫ УПРАВЛЕНИЯ

АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматическая подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации. АСУ с Системой поддержки принятия решений (СППР), являются основным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998). В 1962-1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ - повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления. Различают АСУ объекты (технологическими процессами-АСУТП, предприятием-АСУП, отраслью-ОАСУ) и функциональные автоматизированные системы, например, проектирование плановых расчётов, материально-технического снабжения и т.д.

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

1. Предоставление лицу, принимающему решение (ЛПР) релевантных данных для принятия решений

2. Ускорение выполнения отдельных операций по сбору и обработке данных

3. Снижение количества решений, которые должно принимать ЛПР

4. Повышение уровня контроля и исполнительской дисциплины

5. Повышение оперативности управления

6. Снижение затрат ЛПР на выполнение вспомогательных процессов

7. Повышение степени обоснованности принимаемых решений

Ответить на вопросы:

1. Что такое Автоматизированная система управления (АСУ)?

2. Кто был первым создателем АСУ?

3. В чем состоит главная задача АСУ?

4. Перечислите цели автоматизации управления?

5. Из чего состоит АСУ?

6. По каким признакам делится АСУ?

7. Перечислите Классы структур АСУ?

8. Назовите главную особенность Централизованной рассредоточенной структуры?

9. Назовите достоинства Централизованная рассредоточенная структура?

10. Перечислите задачи иерархической структуры?

11. Перечислите виды АСУ?

12. Приведите примеры АСУ?

На оценку «5»- 11-12 полных ответов на вопросы, на «4»- 10 полных ответов на вопросы, «3»- минимум 9 полных ответов на вопросы. Удачи J


Автоматизированная система управления

Автоматизированная система управления (сокращённо АСУ ) - комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин «автоматизированная», в отличие от термина «автоматическая», подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации. АСУ с Системой поддержки принятия решений (СППР), являются основным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913-1998) . В 1962-1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ - повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления. Различают автоматизированные системы управления объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональные автоматизированные системы, например, проектирование плановых расчётов, материально-технического снабжения и т. д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:Предоставление лицу, принимающему решение (ЛПР), релевантных данных для принятия решений

1. Ускорение выполнения отдельных операций по сбору и обработке данных

2. Снижение количества решений, которые должно принимать ЛПР

3. Повышение уровня контроля и исполнительской дисциплины

4. Повышение оперативности управления

5. Снижение затрат ЛПР на выполнение вспомогательных процессов

6. Повышение степени обоснованности принимаемых решений

Состав АСУ

В состав АСУ входят следующие виды обеспечений: информационное, программное, техническое, организационное, метрологическое, правовое и лингвистическое.

Основные классификационные признаки

Основными классификационными признаками, определяющими вид АСУ, являются:

· сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и т. д.)

· вид управляемого процесса (технологический, организационный, экономический и т. д.);

· уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ устанавливают в техническом задании на создание конкретной АСУ на основе анализа целей управления, заданных ресурсов для их достижения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ. Каждая функция АСУ реализуется совокупностью комплексов задач, отдельных задач и операций. Функции АСУ в общем случае включают в себя следующие элементы (действия):

· планирование и (или) прогнозирование;

· учет, контроль, анализ;

· координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

1. Введение.

2. Автоматизированные системы управления производством: структура.

3. Автоматизированные системы управления производством: функции.

4. Автоматизированные системы управления производством: методы реализации, примеры реализации.

Введение

Классификация автоматизированных систем (АС)

Условно модель любой целесообразной деятельности можно представить как систему, состоящую из объекта (познания, управления, трансформации и т.п.) и некоторой воздействующей на него системы - системы управления (СУ). Система управления может быть полностью автоматической (т.е. взаимодействовать с объектом без участия человека; например, банкомат), неавтоматизированной (т.е. не имеющей в составе компьтер; например, бригада рабочих, роющих траншею), автоматизированной (т.е. содержащей как людей, так и компьютеры; например, автоматизированная система налогообложения).

АСУ - автоматизированная система управления

Автоматизированная система управления - совокупность математических методов, технических средств и организационных комплексов, обеспечивающих рациональное управление сложным объектом или процессом в соответствии с заданной целью, а так же коллектив людей объединенных общей целью

В составе АСУ выделяют:

Основную часть, в которую входят информационное, техническое и математическое обеспечение; и
- функциональную часть, к которой относятся взаимосвязанные программы, автоматизирующие конкретные функции управления.

Системы делятся на примитивные элементарные (для них строятся автоматические системы управления) и большие сложные.

Как уже выше было отмечено, АСУ предназначена для автоматизированной обработки информации и частичной подготовки управленческих решений с целью увеличения эффективности деятельности специалистов и руководителей за счет повышения уровня оперативности и обоснованности принимаемых решений.

Различают два основных типа таких систем: системы управления технологическими процессами (АСУ ТП) и системы организационного управления (АСОУ). Их главные отличия заключаются в характере объекта управления (в первом случае – это технические объекты: машины, аппараты, устройства, во втором – объекты экономической или социальной природы, то есть, в конечном счете коллективы людей) и, как следствие, в формах передачи информации (сигналы различной физической природы и документы соответственно).

Следует отметить, что наряду с автоматизированными существуют и системы автоматического управления (САУ). Такие системы после наладки могут некоторое время функционировать без участия человека.

САУ применяются только для управления техническими объектами или отдельными технологическими процессами. Системы же организационного управления, как следует из их описания, не могут в принципе быть полностью автоматическими. Люди в таких системах осуществляют постановку и корректировку целей и критериев управления, структурную адаптацию системы в случае необходимости, выбор окончательного решения и придание ему юридической силы.

Как правило, АСОУ создаются для решения комплекса взаимосвязанных основных задач управления производственно-хозяйственной деятельностью организаций (предприятий) или их основных структурных подразделений. Для крупных систем АСОУ могут иметь иерархический характер, включать в свой состав в качестве отдельных подсистем АСУ ТП, АС ОДУ (автоматизированная система оперативно-диспетчерского управления), автоматизированные системы управления запасами, оперативно-календарного и объемно-календарного планирования и АСУП (автоматизированная система управления производством на уровне крупного цеха или отдельного завода в составе комбината).

Самостоятельное значение имеют автоматизированные системы диспетчерского управления, предназначенные для управления сложными человеко-машинными системами в реальном масштабе времени. К ним относятся системы диспетчерского управления в энергосистемах, на железнодорожном и воздушном транспорте, в химическом производстве и другие. В системах диспетчерского управления (и некоторых других типах АСУ) используются подсистемы автоматизированного контроля оборудования. Задачами этой подсистемы является измерение и фиксация значений параметров, характеризующих состояние контролируемого оборудования, а сравнение этих значений с заданными границами и информирование об отклонениях.

Отдельный класс АСУ составляют системы управления подвижными объектами, такими как поезда, суда, самолеты, космические аппараты и АС управления системами вооружения.

Так как большие и сложные системы обладают свойством необозримости, то их можно рассматривать с нескольких точек зрения. Следовательно, классификационных признаков тоже много.

(АСУ), совокупность экономико-математических методов, технических средств (ЭВМ, средств связи, устройств отображения информации, передачи данных и т.д.) и организационных комплексов, обеспечивающих рациональное управлениесложным объектом (например, предприятием, технологическим процессом). Наиболее важная цель построения всякой АСУ - резкое повышение эффективности управления объектом (производственным, административным и т.д.) на основе роста производительности управленческого труда и совершенствования методов планирования и гибкого регулирования управляемого процесса. В СССР АСУ создаются на основе государственных планов развития народного хозяйства.

Основные принципы.

Разработка АСУ, порядок их создания и направления эффективного использования базируются на следующих принципах (впервые сформулированных В. М. Глушковым).

Принцип новых задач. АСУ должны обеспечивать решение качественно новых управленческих проблем, а не механизировать приёмы управления, реализуемые неавтоматизированными метолами. На практике это приводит к необходимости решения многовариантных оптимизационных задач на базе экономико-математических моделей большого объёма (масштаба). Конкретный состав подобных задач зависит от характера управляемого объекта. Например, для машиностроительных и приборостроительных предприятий обычно наиболее важными оказываются задачи оперативно-календарного и объёмно-календарного планирования. Решающий эффект достигается в том случае, когда осуществляется точное согласование во времени всех сменных заданий как производственных, так и обеспечивающих (например, на материально-техническое снабжение и др.), определяются оптимальные объёмы партий продукции и производится оптимизация загрузки оборудования. Аналогичные задачи возникают в строительстве. В ряде случаев на первый план выдвигаются задачи технич. подготовки производства, управления проектно-конструкторскими работами. На транспорте важнейшее значение приобретают оптимизация маршрутов и расписаний движения, а также погрузочно-разгрузочных работ. В системах управления отраслью первостепенное значение имеют оптимальное планирование работы предприятий, точное согласование сроков взаимных поставок, а также проблемы перспективного развития отрасли и задачи прогнозирования.

Принцип системного подхода к проектированию А С У. Проектирование АСУ должно основываться на системном анализе как объекта, так и процессов управления им. Это означает необходимость определения целей и критериев эффективности функционирования объекта (вместе с системой управления), анализа структуры процесса управления, вскрывающего весь комплекс вопросов, которые необходимо решить для того, чтобы проектируемая система наилучшим образом соответствовала установленным целям и критериям. Этот комплекс охватывает вопросы не только технического, но также экономического и организационного характера. Поэтому внедрение АСУ даёт принципиально новые возможности для коренного усовершенствования системы экономических показателей и экономического стимулирования.

Принцип первого руководителя. Разработка требований к системе, а также создание и внедрение АСУ возглавляются основным руководителем соответствующего объекта (например, директором завода, начальником главка, министром).

Принцип непрерывного развития системы. Основные идеи построения, структура и конкретные решения АСУ должны позволять относительно просто настраивать систему на решение задач, возникающих уже в процессе эксплуатации АСУ в результате подключения новых участков управляемого объекта, расширения и модернизации технических средств системы, её информационно-математического обеспечения и т.д. Математическое обеспечение АСУ строится таким образом, чтобы в случае необходимости можно было легко менять не только отдельные программы, но и критерии, по которым ведётся управление.

Принцип единства информационной базы. На машинных носителях информации накапливается (и постоянно обновляется) информация, необходимая для решения не какой-то одной или нескольких задач, а всех задач управления. При этом в т. н. основных (генеральных) массивах исключается неоправданное дублирование информации. которое неизбежно возникает, если первичные информационные массивы создаются для каждой задачи отдельно. Основные массивы образуют информационную модель объекта управления. Например, на уровне предприятий основные массивы должны содержать самую подробную информацию обо всех элементах производства: кадровые данные на всех работающих; сведения об основных фондах (земле, помещении, оборудовании со всеми характеристиками, необходимыми для принятия решений по их использованию, перераспределению и т.п.); данные о запасах, включая запасы на промежуточных складах и незавершённое производство; информацию о состоянии оборудования; нормативы (трудовые и материальные) и технологические маршруты (последовательности производственных операций, необходимых для изготовления деталей, узлов и готовых изделий); планы (включая заявки на материально-техническое снабжение); цены и расценки; сведения о текущем состоянии банковских счетов предприятия и др. Система обработки первичных документов, а также система автоматических датчиков должны быть организованы таким образом, чтобы данные о любом изменении, происходящем на предприятии, в минимально короткий срок вводились в ЭВМ, а затем автоматически или по указанию оператора периодически распределялись по основным массивам и при этом чтобы сохранялось состояние готовности выдать любую информацию об объекте. В случае необходимости из основных массивов оперативно формируются производные массивы, ориентированные на те или иные производства, изделия или комплексы задач. Производные массивы в таком случае являются вторичными.

Принцип комплексности задач и рабочих программ. Большинство процессов управления взаимосвязаны и поэтому не могут быть сведены к простому независимому набору отдельных задач. Например, задачи материально-технического снабжения органически связаны со всем комплексом задач оперативно-календарного и объёмно-календарного планирования; задание на материально-техническое снабжение составляется исходя из задач планирования производства, а при срывах в снабжении (по срокам и по номенклатуре) возникает необходимость трансформации планов. Раздельное решение задач планирования и материально-технического снабжения может значительно снизить эффективность АСУ. Принцип комплексности задач и рабочих программ характерен практически для всех классов автоматизированных систем обработки данных (проектирования, испытаний и др.).

Принцип согласования пропускной способности различных звеньев системы. Скорость обработки данных в различных сопряжённых контурах системы должна быть согласована таким образом, чтобы избежать информационных заторов (когда возникает объективная возможность потери данных) или больших информационных пробелов (приводящих к неэффективному использованию некоторых элементов АСУ). Например, не имеет смысла увеличивать скорость выполнений арифметических операций ЦВМ, если при решении конкретных задач АСУ "узким местом" в системе является ввод данных или обмен информацией между внешней памятью и центральным процессором.

Принцип типовости. Разрабатывая технический комплекс, системное математическое обеспечение, рабочие программы и связанные с ними формы и состав информационных массивов, исполнитель обязан стремиться к тому, чтобы предлагаемые им решения подходили возможно более широкому кругу заказчиков. Необходимо в каждом случае определять разумную степень типизации, при которой стремление к широкому охвату потребителей не приведёт к существенному усложнению типовых решений. Типизация решений способствует концентрации сил, что необходимо для создания комплексных АСУ.

В зависимости от целевого назначения АСУ можно разделить на два больших класса: АСУ объектами, предусматривающие управление объектом в целом (по всем функциям), и функциональные АСУ, обеспечивающие автоматизацию той или иной функции управления для широкого класса объектов. АСУ объектами по типу управляемого объекта делятся на АСУ технологическими процессами, АСУ цехами, АСУ предприятиями (например, заводами, НИИ, КБ) - АСУП, АСУ отраслями народного хозяйства (например, промышленностью, связью, транспортом) - ОАСУ и т.д. К функциональным АСУ относят, например, автоматизированную систему плановых расчётов, автоматизированную систему материально-технического снабжения, автоматизированную систему статистич. учёта и т.д.

Состав Асу

АСУ состоит из основы и функциональной части. Основу Асу составляют информационная база, техническая база, математическое обеспечение, организационно-экономическая база. Основа - общая часть для всех задач, решаемых АСУ.

Информационная база АСУ - размещенная на машинных носителях информации совокупность всех данных, необходимых для автоматизации управления объектом или процессом. Обычно информационная база делится на три массива: генеральный, производный и оперативный. Конструкция массивов и их полей (способы размещения на носителях, особенности взаимосвязи данных внутри массива, конкретная компоновка данных и т.д.) определяется типом АСУ и общими характеристиками объектов, для которых она предназначается. Однако целесообразно сохранять типовое конструктивное построение информационной базы для общего класса объектов (например, для машиностроительных предприятий). Генеральный массив объединяет данные, являющиеся общими для всех задач, размещение которых отвечает универсальной структуре, не ориентированной на выполнение какой-либо одной функции управления. Генеральный массив для крупного объекта содержит сотни миллионов символов, занимает большие объёмы запоминающих устройств и не всегда удобен для использования в каждой конкретной задаче, требующей для своего решения специализированной информации. Эта проблема осложняется при мультипрограммной обработке данных и недостаточно ёмких оперативных запоминающих устройствах, предполагающих хранение многих массивов в машинных архивах (лентотеках, картотеках), функционально разобщённых с процессорами. В связи с этим в реально функционирующих АСУ возникает необходимость формирования производных массивов, отражающих специфику структуры объекта, особенности выполняемых в каждый период функций, частоту повторяемости различных задач и ряд др. факторов, связанных с текущей работой системы. Все производные массивы, как правило, формируются из генерального массива. Всякое устойчивое изменение характеристик обслуживаемого объекта должно быть отражено в генеральном массиве. Оперативный массив охватывает текущую информацию, а также промежуточные результаты вычислений. В нём же размещается первичная информация о состоянии обслуживаемого объекта, поступающая периодически по каналам связи или записанная на автономных носителях (перфолентах, перфокартах, магнитных лентах и т.д.). Обработанные и обобщённые данные могут затем вноситься в производный и генеральный массивы либо непосредственно выдаваться потребителю.

Техническая база АСУ включает средства обработки, сбора и регистрации, отображения и передачи данных, а также исполнительные механизмы, непосредственно воздействующие на объекты управления (например, автоматические регуляторы, датчики и т.д.), обеспечивающие сбор, хранение и переработку информации, а также выработку регулирующих сигналов во всех контурах автоматизированного управления производством. Основные элементы технической базы - ЭВМ, которые обеспечивают накопление, хранение и обработку данных, циркулирующих в АСУ. ЭВМ позволяют оптимизировать параметры управления, моделировать производство, подготавливать предложения для принятия решения. Обычно выделяют два класса ЭВМ, используемых в АСУ: информационно-расчётные и учётно-регулирующие. Информационно-расчётные ЭВМ находятся на высшем уровне иерархии управления (например, в координационно-вычислительном центре завода) и обеспечивают решение задач, связанных с централизованным управлением объектом по основным планово-экономическим, обеспечивающим и отчётным функциям (технико-экономическое и оперативно-производственное планирование, материально-техническое снабжение, сбыт продукции и т.д.). Они характеризуются высоким быстродействием, наличием системы прерываний, слоговой обработкой данных, переменной длиной слова, мультипрограммным режимом работы и т.д., а также широким набором и большим объёмом запоминающих устройств (оперативных, буферных, внешних, односторонних и двусторонних, с произвольным и последовательным доступом). В СССР в 70-х гг. в качестве типовых информационно-расчётных ЭВМ для АСУ принята единая система ЭВМ (ЕС ЭВМ). Учётно-регулирующие ЭВМ, как правило, относятся к нижнему уровню управления. Они размещаются обычно в цехах или на участках и обеспечивают сбор информации от объектов управления (станков, складов и т.д.), первичную переработку этой информации, передачу данных в информационно-расчётную ЭВМ и получение от неё директивно-плановой информации, осуществление локальных расчётов (например, расписания работы каждого станка и рабочего, графика подачи комплектующих изделий и материалов, группировки деталей в партии, режимов обработки и т.д.) и выработку управляющих воздействий на объекты управления при отклонении режимов их функционирования от расчётных. Особенность учётно-регулирующих ЭВМ - хорошо развитая система автоматического сопряжения с большим числом источников информации (датчиков, регистраторов) и регулирующих устройств. Их вычислительная часть менее развита, поскольку первично обработанная информация передаётся в ЭВМ верхнего уровня для дальнейшего использования и длительного хранения. Примеры учётно-регулирующих ЦВМ - "Днепр" и М-6000.

Средства сбора и регистрации данных при участии человека включают различные регистраторы производства, с помощью которых осуществляются сбор и регистрация данных непосредственно на рабочих местах (например, в цехе, на участке, станке), а также датчики (температуры, количества изготовленных деталей, времени работы оборудования и т.д.), фиксаторы нарушений установленного технологического и организационного ритма (отсутствие заготовок, инструмента, материалов, неправильная наладка станков, отсутствие транспортных средств для отправки готовой продукции и т.д.). Например, типовыми регистраторами производства являются устройства РИ-7501 (цеховой регистратор) и РИ-7401 (складской регистратор).

Средства отображения информации предназначены для представления результатов обработки информации в удобном для практического использования виде. К ним относятся различные печатающие устройства, пишущие машины, терминалы, экраны, табло, графопостроители, индикаторы и т.п. Эти устройства, как правило, непосредственно связаны с ЭВМ или с регистраторами производства и выдают либо регулярную (регламентную), либо эпизодическую (по запросу или в случае аварийной ситуации) справочную, директивную или предупредительную информацию.

Аппаратура передачи данных осуществляет обмен информацией между различными элементами АСУ (между регистраторами производства и ЭВМ, между координационно-управляющим центром и цеховыми ЭВМ и т.д.), а также между АСУ и смежными управления уровнями (например, между АСУП и ОАСУ, между территориальными вычислительными центрами).

К технической базе АСУ относят также средства оргтехники (копировально-множительную технику, картотеки, диктофоны и т.д.), а также вспомогательные и контрольно-измерительные средства, обеспечивающие нормальное функционирование основных технических средств в требуемых режимах.

Математическое обеспечение АСУ - комплекс программ регулярного применения, управляющих работой технических средств и функционированием информационные базы и обеспечивающих взаимодействие человека с техническими средствами АСУ. Математическое обеспечение условно можно подразделить на систему программирования, операционную систему, общесистемный комплекс и пакеты типовых модулей.

Система программирования обеспечивает трансляцию программы решения задачи, выраженной на удобном для человека формализованном языке, на машинный язык, её отладку, редактирование и включение в пакет программ для обработки. В систему программирования входят описания языков программирования, комплекс трансляторов, библиотека стандартных подпрограмм, программы редактирования связей, наборы программ, осуществляющих преемственность (программную) ЭВМ различных типов. Кроме того, система программирования обычно содержит в своём составе набор программ, облегчающих взаимодействие пользователя с машиной и позволяющих системе программирования развиваться в зависимости от характера задач, решаемых потребителем. В качестве типовых языков программирования для АСУ в СССР приняты алгол-68, фортран, кобол, универсальный язык высшего уровня ПЛ-1, а также машинно-ориентированные языки типа "Ассемблера".

Операционные системы обеспечивают функционирование всех устройств ЭВМ в требуемых режимах и выполнение необходимой последовательности заданий на реализацию различных процедур управления. Операционные системы, как правило, являются неотъемлемой составной частью тех вычислительных средств, которые входят в состав АСУ. Однако в ряде случаев при проектировании АСУ приходится расширять операционные системы для обеспечения специальных системных требований (например, при подключении к системе специфичных для управляемого процесса регистраторов и систем отображения, при организации диалоговых режимов между терминалами и центральным вычислительным комплексом). В этой связи очень важной составной частью операционной системы АСУ является т. н. генератор систем. Это - программа, которая не входит в состав активной части управляющих программ и не связана непосредственно с процессом вычислений, но с помощью которой можно автоматически генерировать комплекс управляющих программ для системы любой конфигурации. Такой метод оказывается особенно эффективным при использовании ЭВМ в широком диапазоне АСУ на различных уровнях и на различных объектах, когда состав ЭВМ и состав решаемых задач может быть существенно различным.

Общесистемный комплекс охватывает набор программ, управляющих работой вычислительной системы и периферийных устройств (регистраторов, средств отображения результатов обработки данных и т.д.). Этот комплекс содержит программы совместной работы нескольких ЭВМ, комплексируемых по различным уровням запоминающих устройств, программы обслуживания каналов связи, дистанционные решения задач в режиме разделения времени, разграничения доступа к информационным массивам и др. К общесистемным комплексам относят также информационно-поисковые системы, осуществляющие целенаправленный поиск требуемых массивов (или формирование необходимых массивов из фрагментов данных), их редактирование и выдачу потребителю в заданной форме (либо передачу этих массивов в запоминающее устройство для использования очередными рабочими программами). К ним же относят программы обслуживания средств, работающих в реальном масштабе времени, а также обслуживания терминальных устройств и средств отображения информации.

Пакеты типовых прикладных модулей (стандартных подпрограмм) могут использоваться в различных комбинациях при решении той пли иной функциональной задачи. Типовыми, например, являются прикладные модули сортировки данных, статистической обработки информации, обработки сетевых графиков планирования и управления, моделирования реальных процессов и др. К математическому обеспечению АСУ часто относят также программы функционального анализа системы, обеспечивающие удобство эксплуатации и совершенствования системы.

Под организационно-экономической базой понимается совокупность экономических принципов, методов организации производства и управления, схем взаимодействия задач управления на основе правовых документов. Сюда входят организационно-экономический состав и способы формирования технико-экономических показателей управляемого объекта, а также основные принципы повышения эффективности его функционирования и место АСУ в общей системе планирования, учёта и регулирования; организация производства, труда и управления, определяющая рациональную структуру объекта (цеха, отдела и т.д.), порядок реализации технологических маршрутов, наиболее благоприятные условия работы, сохраняющие высокую работоспособность рабочих и служащих, а также научно обоснованную систему управления объектом, чёткие положения о всех подразделениях, их подчинённости, обязанностях сотрудников и их ответственности; организационно-экономическая модель, предусматривающая построение схемы взаимодействия основных задач АСУ, структуры информационного потока, а также методическое обеспечение порядка реализации задач и использования результатов их решения; организационно-правовое обеспечение (правовые основы и нормы создания и использования АСУ, правовой статус циркулирующей в АСУ информации, а также права и ответственность должностных лиц). Кроме того, организационно-экономическая база включает методические и инструктивные материалы, определяющие влияние АСУ на основные показатели функционирования объекта, оценку эффективности и пути дальнейшего развития АСУ.

Функциональная часть АСУ состоит из набора взаимосвязанных программ для реализации конкретных функций управления (планирование, финансово-бухгалтерскую деятельность и др.). Все задачи функциональной части базируются на общих для данной АСУ информационных массивах и на общих технических средствах. Включение в систему новых задач не влияет на структуру основы и осуществляется посредством типового для АСУ информационного формата и процедурной схемы. Функциональную часть АСУ принято условно делить на подсистемы в соответствии с основными функциями управления объектом. Подсистемы в свою очередь делят на комплексы, содержащие наборы программ для решения конкретных задач управления в соответствии с общей концепцией системы. Состав задач функциональной части АСУ определяется типом управляемого объекта, его состоянием и видом выполняемых им заданий. Например, в АСУ предприятием часто выделяют следующие подсистемы: технической подготовки производства; управления качеством продукции; технико-экономического планирования; оперативно-производственного планирования; материально-технического обеспечения; сбыта продукции; финансово-бухгалтерской деятельности; планирования и расстановки кадров; управления транспортом; управления вспомогательными службами. Деление функциональной части АСУ на подсистемы весьма условно, т.к. процедуры всех подсистем тесно взаимосвязаны и в ряде случаев невозможно провести чёткую границу между различными функциями управления (например, между технико-экономическим планированием, оперативно-производственным планированием и материально-техническим обеспечением). Выделение подсистем используется для удобства распределения работ по созданию системы и для привязки к соответствующим организационным звеньям объекта управления. Структура функциональной части АСУ зависит от схемы процедур управления, определяющей взаимосвязь всех элементов управления и охватывающей автоматизированные, частично механизированные и ручные процедуры. Функциональная часть более мобильна, чем основа, и допускает изменение состава и постановки задач при условии обеспечения стандартного сопряжения с базовыми элементами системы.

Перспективным направлением развития АСУ является создание Общегосударственной автоматизированной системы управления (ОГАС), предусматривающей взаимную связь управления всеми административными, промышленными и др. объектами страны с целью обеспечения оптимальных пропорций развития народного хозяйства СССР, выработки напряжённых сбалансированных плановых заданий и их безусловного выполнения. Технической базой ОГАС станет Единая государственная сеть вычислительных центров, осуществляющая информационную и функциональную координацию работы центров страны.

Классифицировать АСУ можно:

1. ПО УРОВНЮ.

Интеграция - взаимосвязанная деятельность разнородных подсистем.
по вертикали по горизонтали (уровню).

Интеграция по вертикали:

АСУ Отрасли

АСУ Производства

АСУ Участка

АСУ Процесса

2. ПО ТИПУ ПРИНИМАЕМОГО РЕШЕНИЯ.

2.1 Информационно-справочные системы, которые просто

сообщают

информацию ("экспресс", "сирена", "09")

2.2 Информационно-советующая (справочная) система,

представляет собой варианты и оценки по различным критериям этих вариантов.

2.3 Информационно-управляющая система, выходной результат не

совет, а управляющее воздействие на объект

3. ПО ТИПУ ПРОИЗВОДСТВА.

3.1 АСУ дискретно-непрерывным производством.

3.2 АСУ дискретным производством.

3.3 АСУ непрерывным производством.

4. ПО НАЗНАЧЕНИЮ.

4.1 Военные АСУ.

4.2 Экономические системы (предприятия, конторы, управляющие

властные структуры).

4.3 Информационно-поисковые системы.

5. ПО ОБЛАСТЯМ ЧЕЛОВЕЧЕСКОЙ ДЕЯТЕЛЬНОСТИ.

5.1 Медицинские системы.

5.2 Экологические системы.

5.3 Системы телефонной связи.

6. ПО ТИПУ ПРИМЕНЯЕМЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН.

6.1 Цифровые Вычислительные Машины (ЦВМ)

БВМ, средние, миниЭВМ, РС

6.2 Аналоговые Вычислительные Машины

6.3 Гибридные

Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ.

Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

В состав АСУ входят следующие виды обеспечений: информационное, программное, техническое, организационное, метрологическое, правовое и лингвистическое.

В процессе создания АСУ используют математическое обеспечение.

В состав информационного обеспечения АСУ входят классификаторы технико-экономической информации, нормативно-справочная информация, форма представления и организация данных в системе, в том числе формы документов, видеограмм, массивов и логические интерфейсы (протоколы обмена данными).

В состав программного обеспечения АСУ входят программы (в том числе программные средства) с программной документацией на них, необходимые для реализации всех функций АСУ в объеме, предусмотренном в техническом задании на создание АСУ.

В состав технического обеспечения АСУ входят технические средства, необходимые для реализаций функций АСУ. В общем случае оно включает средства получения, ввода, подготовки, обработки, хранения (накопления), регистрации, вывода, отображения, использования, передачи информации и средства реализации управляющих воздействий.

В состав организационного обеспечения АСУ входят документы определяющие функции подразделений управления, действия и взаимодействие персонала АСУ.

В состав метрологического обеспечения АСУ входят метрологические средства и инструкции по их применению.

В состав правового обеспечения АСУ входят нормативные документы, определяющие правовой статус АСУ, персонала АСУ, правил функционирования АСУ и нормативы на автоматически формируемые документы, в том числе на машинных носителях информации.

Правовое обеспечение АСУ в составе функционирующей системы реализуется в виде документов организационного обеспечения АСУ.

В состав лингвистического обеспечения АСУ входят тезаурусы и языки описания и манипулирования данными. Лингвистическое обеспечение функционирующей АСУ может присутствовать в ней самостоятельно или в виде решений по информационному обеспечению АСУ и в документах организационного обеспечения АСУ.

В состав математического обеспечения АСУ входят методы решения задач управления, модели и алгоритмы.

В функционирующей системе математическое обеспечение реализовано в составе программного обеспечения.

Структуры АСУ характеризуют внутреннее строение системы, описывают устойчивые связи между ее элементами.

При описании АСУ пользуются следующими видами структур, отличающимися типами элементов и связей между ними:

Функциональная (элементы - функции, задачи, операции; связи - информационные);

Техническая (элементы-устройства; связи - линии связи);

Организационная (элементы - коллективы людей и отдельные исполнители; связи - информационные, соподчинения и взаимодействия;

Алгоритмическая (элементы - алгоритмы; связи - информационные); программная (элементы - программные модули; связи - информационные и управляющие);

Информационная (элементы - формы существования и представления информации в системе; связи - операции преобразования информации в системе).

Классификация систем по масштабу применения

Локальные (в рамках одного рабочего места);

Местные (в пределах одной организации);

Территориальные (в пределах некоторой административной территории);

Отраслевые.

Классификация по режиму использования

Системы пакетной обработки (первые варианты организационных АСУ, системы информационного обслуживания, учебные системы);

Запросно-ответные системы (АИС продажи билетов, информационно-поисковые системы, библиотечные системы);

Диалоговые системы (САПР, АСНИ, обучающие системы);

Системы реального времени (управление технологическими процессами, подвижными объектами, роботами-манипуляторами, испытательными стендами и другие).

В соответствии с ЖЦ инженерного изделия различают следующие виды АС:

АСНИ – автоматизированная система научных исследований (Основная цель: моделирование и проведение экспериментов. Решаемые задачи и инструментарий: математическая статистика, планирование эксперимента, методы оптимизации, имитационное моделирование);

САПР – система автоматизированного проектирования (Основная цель: автоматизация процессов расчетов и проектирования. Решаемые задачи: изготовление конструкторской документации, смет, заказных спецификаций, оптимизация проектных решений, снижение сроков проектирования);

АСТПП - автоматизированная система технологической подготовки производства (Основная цель: подготовить конкретное предприятие с его конкретными материальными и человеческими ресурсами к выпуску того или иного изделия или переходу на новую технологию. Решаемые задачи: составление маршрутных и технологических карт, расчет и оптимизация загрузки людей и оборудования; расчеты потребностей и планирование запасов и т.п);

АСУТП - автоматизированная система управления технологическими процессами (Основная цель: управление изготовлением готовой продукции в основном для непрерывных производств, например, производства аммиачной селитры. Решаемые задачи: задачи автоматического управления и регулирования);

ГПС – гибкие производственные системы (набор производственных модулей, станков с числовым программным управлением, промышленных роботов, из которых можно создать технологическую систему). (Основная цель: автоматизация дискретного производства, например производство автомобилей. Решаемыезадачи: механическая, термическая идр обработка, перемещение изделия и компонентов между производственными модулями, складирование и т.п.);

- АСУП - автоматизированная система управления предприятием (Основная цель: решает задачи организации управления и экономики. Основные задачи: бух учет, планирование, кадры, снабжение, сбыт и т.п.).

Структура АСУП

Автоматизация производством – это процесс в развитии машинного производства, при котором функции управления и контроля, ранее выполнявшиеся человеком, передаются приборам и автоматическим устройствам.

Цель автоматизации производства заключается в повышении эффективности труда, улучшении качества выпускаемой продукции, в создании условий для оптимального использования всех ресурсов производства.

Одной из характерных тенденций развития общества является появление чрезвычайно сложных (больших систем). Основными причинами этого являются: непрерывно увеличивающаяся сложность технических средств, применяемых в народном хозяйстве; необходимость в повышении качества управления как техническими, так и организационными системами (предприятие, отрасль, государство и др.); расширяющаяся специализация и кооперирование предприятий – основные тенденции развития народного хозяйства.

Структура АСУП представлена в виде схемы:

Внедрение автоматизированной системы управления предприятием , как и любое серьезное преобразование на предприятии, является сложным и зачастую болезненным процессом. Тем не менее, некоторые проблемы, возникающие при внедрении системы, достаточно хорошо изучены, формализованы и имеют эффективные методологии решения. Заблаговременное изучение этих проблем и подготовка к ним значительно облегчают процесс внедрения и повышают эффективность дальнейшего использования системы.

Функции АСУП

Функции АСУП устанавливают в техническом задании на создание конкретной АСУП на основе анализа целей управления, заданных ресурсов для их достижения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУП. Каждая функция АСУП реализуется совокупностью комплексов задач, отдельных задач и операций. Функции АСУП в общем случае включают в себя следующие элементы (действия):

Планирование и (или) прогнозирование;

Учет, контроль, анализ;

Координацию и (или) регулирование.

Методы реализации

Целью создания АСУП является не автоматизация как таковая, а повышение управляемости предприятия и эффективности его деятельности за счет улучшения качества бизнес-процессов, в том числе автоматизации их функций. Автоматизация функций бизнес-процессов позволяет руководству оперативно получать достоверную информацию о себестоимости продукции, состоянии дебиторско-кредиторской задолженности, производственных запасах и прочую необходимую информацию, на основании которой легко принимать обоснованные управленческие решения.

Работы по созданию АСУП выполняются в соответствии с государственными (ГОСТ) и международными (ISO) стандартами по проектной технологии, которая включает в себя все стадии жизненного цикла автоматизированной системы:

Предпроектное обследование;

Системное и техническое проектирование;

Проектирование организационно-функциональной структуры;

Автоматизация и реинжиниринг бизнес-процессов;

Обучение пользователей и администраторов;

Проектирование и монтаж локальных сетей;

Поставку, установку, запуск и обслуживание сетевого оборудования и серверов;

Реализацию и ввод в действие автоматизированной системы (внедренческие и пусконаладочные работы, в том числе, перенос данных из других систем);

Сопровождение АС.

В состав проектных групп входят и специалисты с опытом решения широкого спектра задач по автоматизации бухгалтерского, финансового и управленческого учета на промышленных предприятиях.

Создание систем управления предприятием возможно с привлечением на условиях субподряда консалтинговых компаний и региональных внедренческих фирм-партнеров фирмы 1С, что позволяет повысить эффективность проектов создания АСУП, снизить их стоимость и обеспечить высокое качество технической поддержки и сопровождения.

Основные проблемы и задачи, требующие особого внимания при их решении:

Отсутствие постановки задачи менеджмента на предприятии;

Необходимость в частичной или полной реорганизации структуры предприятия;

Необходимость изменения технологии бизнеса в различных аспектах;

Сопротивление сотрудников предприятия;

Временное увеличение нагрузки на сотрудников во время внедрения автоматизированной системы управления предприятием;

Необходимость в формировании квалифицированной группы внедрения и сопровождения системы, выбор сильного руководителя группы.

Построение единой информационной инфраструктуры промышленных предприятий, обеспечивающей совместную работу программных и аппаратных средств систем АСУП и АСУТП, становится все более актуальной задачей.

На пути резко возрастающих информационных потоков стоят технологические барьеры между различными уровнями автоматизации, возникшими в результате независимого развития АСУП и АСУТП. По оценкам экспертов, только сбор данных в реальном масштабе времени о различных аспектах производственных процессов приведет в ближайшие годы почти к тридцатикратному увеличению трафика в распределенных системах промышленного управления, причем значительно возрастут потоки информации между датчиками и программируемыми контроллерами. Поэтому одной из задач комплексной автоматизации является организация межсетевого обмена в масштабах всего предприятия на основе стандартной масштабируемой высокопроизводительной технологии.

Современные системы АСУП, базирующиеся на стандартах, используют в коммуникационных инфраструктурах сети Ethernet и протоколы TCP/IP. В информационных комплексах предприятий широко применяются Internet-технологии. В области АСУТП со стандартизацией дело обстоит намного хуже. Существует более полусотни коммуникационных технологий, относящихся к классу промышленных сетей или полевых шин, предоставляющих возможность создания распределенных систем, в состав которых входят программируемые логические контроллеры, датчики и исполнительные устройства. Значительная часть этих технологий основана на собственных протоколах и аппаратных средствах компаний-производителей. Естественно, интерес к унификации промышленных сетей, предоставляющих возможность построения мультивендорных систем, весьма велик, хотя этому и препятствует достаточно узкая сегментация рынка по отраслям промышленности, а также коммерческие интересы крупнейших производителей (Fisher-Rosemount, Honeywell, Rockwell Automation, Siemens и ряда других), долгое время выпускающих собственные коммуникационные продукты. В последние годы поставщики оборудования для автоматизации производственных процессов обратили внимание на Ethernet. Однако до сих пор вопрос о масштабах проникновения Ethernet в комплексы управления производственными процессами и возможности замены таких распространенных технологий, как Foundation Fieldbus, Profibus или DeviceNet, остается открытым.

Петербургская компания "КОРУС Консалтинг" завершила внедрение автоматизированной системы управления предприятием Navision AXAPTA в германской группе компаний OSKO .
Компания "КОРУС Консалтинг" - официальный партнер одного из крупнейших в мире производителей ERP-систем - датской компании Navision A/S. Реализацию данного проекта специалисты "КОРУС Консалтинг" осуществляли совместно с сотрудниками группы "OSKO". Внедрение системы заняло 6 месяцев. Общая стоимость проекта составляет более 100 тыс. долларов.
Посредством внедрения Navision AXAPTA, "OSKO" рассчитывает значительно ускорить процесс обработки заказов и оптимизировать логистические цепочки. Политика компаний группы предусматривает ведение открытого бизнеса, предполагающего ведение бухгалтерского учета в соответствии с требованиями как российского законодательства, так и c международными стандартами - эта задача также решается средствами Navision AXAPTA. Кроме того, система осуществляет оперативный учет и контроль большого количества наименований товаров. Группа компаний "OSKO" имеет территориально-распределенную структуру, поэтому Navision AXAPTA обеспечивает полный и своевременный обмен данными между удаленными друг от друга филиалами и складами. Более того, в системе изначально предусмотрена возможность увеличения количества функций в процессе развития группы компаний.
Группа компаний "OSKO" работает на рынке России и Беларуси с начала 90-х годов. Она представляет продукцию ряда ведущих немецких фирм-производителей инженерного оборудования, активно вкладывает средства в ремонт и благоустройство Москвы, Санкт-Петербурга и других городов России.
Основными задачами компании в ближайшем будущем являются повышение качества обслуживания клиентов, расширение территории и освоение новых региональных рынков, увеличение дилерской сети, а также увеличение ассортимента распространяемой продукции.
Компания "КОРУС Консалтинг" является официальным представителем в СНГ и странах Балтии одного из крупнейших в мире производителей систем бюджетирования и управленческого анализа - американской корпорации Comshare Inc. "КОРУС Консалтинг" также является Navision Solution Center - официальным представителем датской корпорации Navision A/S по продажам на территории России интегрированной системы управления бизнесом Navision AXAPTA. Компания действует на российском рынке с начала 2000 г. В списке клиентов "КОРУС Консалтинг" такие крупные российские предприятия как "Акрихин", "Чайковский текстиль", "Соликамский магниевый завод", "КомиАрктикОйл", "Первоуральский новотрубный завод", "КМБ-Банк", торговая компания "ОСКО" и др.

ОАО "ПО Красноярский завод комбайнов" внедряет комплексную автоматизированную систему управления предприятием Baan IV
С 1 марта специалистами ГК "Альфа Интегратор - Баан Евразия" начато внедрение на "Красноярском заводе комбайнов" комплексной автоматизированной системы управления предприятием Baan. На первом этапе будут внедрены функциональные направления ERP-системы: "Производство" и "Сбыт, снабжение, склады". Сдача в промышленную эксплуатацию этих модулей позволит оптимизировать следующие основные бизнес-процессы: планирование производства, оперативное управление производством, учет производственных затрат, управление материальными потоками, управление складированием, закупками и продажами. Реализация первой стадии проекта уже предусматривает получение экономического эффекта. В дальнейшем предусмотрено создание полнофункционального решения за счет внедрения остальных подсистем, таких как «Финансы», «Контроллинг» и т.д.
Решение о внедрении ERP-системы Baan руководством ОАО «ПО Красноярский завод комбайнов» было принято после детального ознакомления с функциональными возможностями этой системы, а также референтного визита на машиностроительное предприятие Украины "Гидросила", где силами специалистов ГК «Альфа Интегратор. Баан Евразия» успешно внедрена и действует система Baan. После внедрения системы на «Гидросиле» ощутили существенный экономический эффект.
По словам начальника управления информационных технологий ОАО «ПО Красноярский завод комбайнов» Олега Малышева: «Продукты и решения Baan хорошо зарекомендовали себя на многих машиностроительных предприятиях России и мира, поэтому, тщательно проанализировав рыночную ситуацию, мы остановили свой выбор на данной ERP-системе. Мы уверены, что внедрение Baan IV окажется важным шагом в развитии нашего предприятия».
Параллельно на ОАО «ПО Красноярский завод комбайнов» идет внедрение системы CAD/CAM. Работы по внедрению ведут специалисты компании Гетнет. ГК «Альфа Интегратор. Баан Евразия» и компания Гетнет являются давними партнерами. В итоге, планируется реализовать уникальную для России модель сквозного управления производством, начиная от технологического проектирования изделия и до выпуска готовой продукции, что является одной из первых работ по созданию решения по управлению жизненным циклом продукта (PLM).

ЛИТЕРАТУРА

1. В.А. Острековский; Теория систем; Высш. шк., 1997.

2. Глушков В. М., Введение в АСУ, 2 изд., К., 1974; Жимерин Д. Г.,

Мясников В. А., Автоматизированные и автоматические системы

управления, М., 1975.

3. «Большая Российская Энциклопедия».

4. http://www.cmdsoft.ru/auto_system.shtml.

5. http://www.nit.kz/.

Целью создания автоматизированной системы управления (АСУ ) является повышение эффективности производственно-хозяйственной деятельности за счет улучшения использования имеющихся ресурсов. Иными словами, цель создания АСУ - мобилизация резервов, не находящих применения в силу ограниченных возможностей традиционных методов и средств управления. Повышение эффективности производственно-хозяйственной деятельности предприятия в результате применения АСУ достигается за счет повышения качества решения планово-экономических задач и улучшения на этой основе использования производственных ресурсов, а также благодаря рационализации деятельности управленческого персонала.

Повышение качества решения планово-экономических задач обусловлено следующими факторами:

  1. рационализацией или оптимизацией производственно-хозяйственных планов предприятий;
  2. оптимизацией уровня запасов материальных ресурсов;
  3. оптимизацией календарного планирования, а следовательно, функционирования производства;
  4. ускорением процессов обработки данных.

АСУ представляет собой систему управления с применением современных автоматических средств обработки данных (ЭВМ, устройств накопления, регистрации, отображения и др.) и экономико-математических методов для регулярного решения основных задач управления производственно-хозяйственной деятельностью предприятия.

Принципы разработки АСУ обусловливаются требованиями и возможностями научного управления, а также особенностями конкретных объектов управления и использования современных технических средств.

Основные принципы разработки АСУ подразделяются на следующие группы:

  1. экономико-математического характера;
  2. системного характера;
  3. организационно-технического характера.

Эти принципы подчеркивают экономическую природу АСУ, отличающую ее от разнообразных технических систем управления, первоочередность при разработке АСУ экономических проблем, необходимость приспособления общесистемных положений, математического аппарата и технических средств к особенностям и условиям функционирования конкретных предприятий.

Принципы экономико-математического характера

1. Определение объекта и органа управления как системы и построение ее модели. Общая модель системы управления должна отображать взаимосвязь всех аспектов и методов планирования и регулирования производственно-хозяйственной деятельности. Модель системы управления на основе системного описания объекта можно представить в виде:

  • общего описания закономерностей производственно-хозяйственной деятельности предприятий;
  • математических формул и уравнений, отражающих характер закономерностей развития и функционирования производства;
  • блока схем взаимосвязи факторов развития и функционирования производства.

Разработка модели системы управления в той или иной форме представления требует различных глубин исследования и затрат ресурсов. Для минимизации затрат времени, повышения эффективности исследования на первых этапах проектирования целесообразна разработка экономико-организационной модели в виде общего описания или схемного представления.

2. Определение приоритета отдельных задач управления и очередности их разработки в рамках общей модели управления. Невозможность построения общей рабочей модели системы управления обусловливает необходимость оценки важности и установления очередности разработки и внедрения отдельных задач управления. Это производится на основе диагностического анализа, который позволяет получить оценки качества решения задач управления - величины резервов из-за их несовершенного решения.

Выбранный в результате диагностического анализа комплекс первоочередных задач управления определяет направления дальнейших исследований и работ по созданию АСУ. В то же время последующие комплексы задач управления представляют собой перспективы, новые задачи АСУ. Установление задач, подлежащих разработке и внедрению в ходе развития АСУ, позволяет более четко направить дальнейшие исследования и работы.

3. Воссоединение замкнутого контура управления в АСУ. Реализация какой-либо задачи должна охватывать по возможности все циклы управления: прогнозирование, планирование, организацию производства, оперативное управление, учет и контроль хода выполнения плана.

Воссоединение всех циклов управления в разрезе выделенных задач значительно ускоряет процессы принятия решений и уменьшает неконтролируемый период функционирования производства. Это обеспечивает понижение степени резервирования производства материальными и иными ресурсами, что, в конечном счете, повышает эффективность его деятельности.

Принципы системного характера

1. Установление перечня и частоты подготовки информации, необходимой коллективу специалистов аппарата управления для анализа производственно-хозяйственных ситуаций и принятия решений. Функционирование ЭВМ в замкнутом контуре управления вызывает необходимость установления конкретных форм выработки данных и документации, представляющих информацию специалистам аппарата управления.

В процессе разработки АСУ необходимо различать три группы документации. Первая группа документации определяется вышестоящими органами управления. Эта документация - формы отчетов, планов и т. п. - не может быть изменена и поэтому принимается за основу. Вторая группа - это документы действующей системы управления, сохраняемые в новой системе для обеспечения удобства деятельности человека. Третья группа выходных документов вырабатывается с учетом требований новой модели системы управления и анализа организации управленческого труда в подразделении аппарата.

2. Максимальное освобождение аппарата управления от сведений, не используемых в процессе решения оперативных задач. Это достигается путем:

а) автоматизации решений наиболее массовых производственно-хозяйственных задач. При этом в первое время процесс автоматизации принятия решений может осуществляться на основе элементарных процедур, а впоследствии - на базе экономико-математического моделирования;

б) перехода к выдаче данных с помощью ЭВМ на основе системы запросов, т. е. к подготовке данных только по требованию работников аппарата управления.

3. Организация централизованной нормативно-справочной базы в памяти ЭВМ. Единая нормативно-справочная база, обслуживая различные функции управления, обеспечивает интеграцию и сопоставимость принимаемых решений. В экономическом плане наличие такой базы позволяет резко повысить качество планирования производства на основе лучшей сбалансированности показателей плана и сокращения всякого рода потерь от недостатка пли избытка запасов в какой-либо момент времени. Реализация управленческих расчетов на основе единой нормативно-справочной базы существенно упрощает функционирование аппарата управления, избавляя его подразделения от рутинных работ.

4. Организация потока данных между системой и объектом управления через ЭВМ. Весь поток первичной документации, регистрирующей состояние производства и необходимой для контроля выполнения и корректировки планов деятельности, должен из пунктов формирования непосредственно вводиться в ЭВМ. В ЭВМ первичная информация должна синтезироваться с хранимыми здесь нормативно-справочными данными; далее без дополнительных сведений должны производиться все последующие операции выработки необходимой аппарату управления документации и передаваться ему (представлено на рисунке ниже).

Блок-схема принятия решения ЭВМ по обеспечению материальными ресурсами

Перевод потока данных непосредственно в ЭВМ освобождает работников аппарата управления от ручных операций, связанных с получением и обработкой первичной документации.

5. Одноразовая фиксация фактических данных в первичных документах.

Это означает, что в первичной документации должны отражаться только сведения, характеризующие фактическое состояние динамики производства. Из документации должны быть исключены всякого рода нормативные и справочные сведения, ибо все нормативно-справочные данные уже зафиксированы и

хранятся в памяти ЭВМ. Исключение расчетных и справочных показателей позволяет упростить первичную документацию и тем самым снизить трудоемкость управленческих работ в низовом звене управления.

6. Непрерывное обновление нормативно-справочных данных, хранящихся в памяти ЭВМ. Любые изменения конструкции изделий и технологии изготовления должны находить отражение в нормативно-справочных данных, хранящихся в памяти ЭВМ.

7. Органический синтез всех элементов АСУ в пространстве и времени, а также установление строгого графика их функционирования в процессе решения задач управления. При разработке АСУ должны быть органически увязаны методы и средства решения задач управления, обеспечены подготовка необходимых инструкций и программ и обучение персонала управления.

Организационно-технические принципы

1. Правовое обеспечение аппарата управления. Правовое обеспечение призвано регламентировать деятельность работника в процессе решения задач управления, т. е. определить круг его прав и обязанностей, а также основные, принципиальные линии поведения в условиях неопределенности. В некотором смысле правовое обеспечение должно устанавливать характер деятельности работника управления в процессе решения обычных, систематических задач, а также стимулировать поиск наилучших решений в непредвиденных ситуациях. Кроме того, правовое обеспечение в виде общих положений и должностных инструкций должно регулировать порядок взаимоотношений подразделений с работниками органа управления, а также с другими ячейками народного хозяйства.

Важной функцией правового обеспечения является предупреждение всякого рода действий работников аппарата управления, которые могут нанести непоправимый ущерб рассматриваемому объекту или смежным с ним подразделениям народного хозяйства.

2. Приведение организационной структуры аппарата управления в соответствие с характером модели системы управления и технологией информационных работ. Организационная структура аппарата управления должна соответствовать модели системы управления и вытекающему из ее особенностей правовому обеспечению. Реализация этого принципа требует:

  • уточнить или разработать новую схему организационной структуры аппарата управления;
  • определить основные функции и задачи отдельных подразделений и работников аппарата;
  • установить комплекс входной и выходной документации по каждому подразделению;
  • регламентировать схему взаимодействия подразделений;
  • уточнить график работы всех подразделений.

Разработка организационной структуры должна обеспечить решение вопросов о положении новых подразделений, в частности информационно-вычислительного центра (ИВЦ).

3. Подготовка персонала аппарата управления к работе в условиях использования новых методов и средств для решения задач управления должна являться неотъемлемой частью общего комплекса работ по созданию АСУ. В процессе разработки АСУ должны осуществляться:

  • совместное формулирование задач управления специалистами исследовательских организаций и работниками аппарата управления;
  • обучение работников аппарата управления новым методам решения задач и ознакомление их с возможностями и особенностями новых средств;
  • непрерывное информирование работников аппарата управления о ходе, трудностях и результатах разработок методов решения новых задач;
  • совместное экспериментальное решение задач управления работниками исследовательских организаций и аппарата управления («обучение» новой системе управления).

Процесс подготовки персонала должен сопровождать весь ход разработок АСУ, он должен учитывать все психологические аспекты взаимоотношений работников исследовательских организаций и аппарата управления, ибо возможные в этой области конфликты могут затягивать сроки создания АСУ.

Поделиться: