Элементы квантовой механики. Корпускулярно-волновой дуализм свойств частиц вещества. Волны де Бройля и их свойства. Соотношение неопределенностей Гейзенберга. Соотношение неопределённостей

Элементы квантовой механики

Корпускулярно-волновой дуализм свойств частиц вещества.

§1 Волны де Бройля

В 1924г. Луи де Бройль (французский физик) пришел к выводу, что двойственность света должна быть распространена и на частицы вещества - электроны. Гипотеза де Бройля заключалась в том, что электрон, корпускулярные свойства которого (заряд, масса) изучаются давно, имеет еще и волновые свойства, т.е. при определенных условиях ведет себя как волна.

Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов.

Идея де Бройля состояла в том, что это соотношение имеет универсальный характер, справедливый для любых волновых процессов. Любой частице, обладающей импульсом р, соответствует волна, длина которой вычисляется по формуле де Бройля.

- волна де Бройля

p = mv - импульс частицы, h - постоянная Планка.

Волны де Бройля , которые иногда называют электронными волнами, не являются электромагнитными.

В 1927 году Дэвиссон и Джермер (амер. физик) подтвердили гипотезу де Бройля обнаружив дифракцию электронов на кристалле никеля. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов 2 dsin j = n l , а брэгговская длина волны оказалась в точности равной .

Дальнейшее подтверждение гипотезы де Бройля в опытах Л.С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (Е » 50 кэВ) через фольгу из различных металлов. Затем была обнаружена дифракция нейтронов, протонов, атомных пучков и молекулярных пучков. Появились новые методы исследования вещества - нейтронография и электронография и возникла электронная оптика.

Макротела также должны обладать всеми свойствами (m = 1кг, следовательно, l = 6 . 6 2 · 1 0 - 3 1 м - невозможно обнаружить современными методами - поэтому макротела рассматриваются только как корпускулы).

§2 Свойства волн де Бройля

  • Пусть частица массы m движется со скоростью v . Тогда фазовая скорость волн де Бройля

.

Т.к. c > v , то фазовая скорость волн де Бройля больше скорости света в вакууме (v ф может быть больше и может быть менше с, в отличие от групповой).

Групповая скорость

  • следовательно, групповая скорость волн де Бройля равна скорости движения частицы.

Для фотона

т.е. групповая скорость равная скорости света.

§3 Соотношение неопределенностей Гейзенберга

Микрочастицы в одних случаях проявляют себя как волны, в других как корпускулы. К ним не применимы законы классической физики частиц и волн. В квантовой физике доказывается, что к микрочастице нельзя применять понятие траектории, но можно сказать, что частица находится в данном объеме пространства с некоторой вероятностью Р . Уменьшая объем, мы будем уменьшать вероятность обнаружить частицу в нем. Вероятностное описание траектории (или положения) частицы приводит к тому, что импульс и, следовательно, скорость частицы может быть определена с какой-то определенной точностью.

Далее, нельзя говорить о длине волны в данной точке пространства и отсюда следует, что если мы точно задаем координату Х, то мы ничего не сможем сказать о импульсе частицы, т.к. . Только рассматривая протяженный участок D C мы сможем определить импульс частицы. Чем больше D C , тем точнее D р и наоборот, чем меньше D C , тем больше неопределенность в нахождении D р .

Соотношение неопределенностей Гейзенберга устанавливает границу в одновременном определении точности канонически сопряженных величин, к которым относятся координата и импульс, энергия и время.

Соотношение неопределенностей Гейзенберга: произведение неопределенностей значений двух сопряженных величин не может быть по порядку величины меньше постоянной Планка h

(иногда записывают )

Таким образом. для микрочастицы не существует состояний, в которых её координата и импульс имели бы одновременно точные значения. Чем меньше неопределенность одной величины, тем больше неопределенность другой.

Соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

следовательно, чем больше m , тем меньше неопределенности в определении координаты и скорости. При m = 10 -12 кг , ? = 10 -6 и Δ x = 1% ?, Δv = 6,62·10 -14 м/с, т.е. не будет сказываться при всех скоростях, с которыми пылинки могут двигаться, т.е. для макротел их волновые свойства не играют никакой роли.

Пусть электрон движется в атоме водорода. Допустим Δ x » 1 0 -10 м (порядка размеров атома, т.е. электрон принадлежит данному атому). Тогда

Δv = 7,27· 1 0 6 м/с. По классической механике при движении по радиусу r » 0 , 5 · 1 0 - 1 0 м v = 2,3·10 -6 м/с. Т.е. неопределенность скорости на порядок больше величины скорости, следовательно, нельзя применять законы классической механики к микромиру.

Из соотношения следует, что система имеющая время жизни D t , не может быть охарактеризована определенным значением энергии. Разброс энергии возрастает с уменьшением среднего времени жизни. Следовательно, частота излученного фотона также должна иметь неопределенность D n = D E / h , т.е. спектральные линии будут иметь некоторую ширину n ± D E / h , будут размыты. Измерив ширину спектральной линии можно оценить порядок времени существования атома в возбужденном состоянии.

§4 Волновая функция и ее физический смысл

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. ~ е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или y -функцией (пси - функцией).

Волновая функция - функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * - функция комплексно сопряженная с Ψ

(z = a + ib , z * = a - ib , z * - комплексно сопряженное)

Если частица находится в конечном объеме V , то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 Þ

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

Условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

y - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

  • непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
  • Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями y 1 , y 2 ... y n , то она может находится в состоянии y , описываемой линейной комбинаций этих функций:

С n (n =1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

Временное уравнение Шредингера.

Набла - оператор Лапласа

Потенциальная функция частицы в силовом поле,

Ψ(y , z , t ) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

(2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2) ® (1):

(3)

Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

Граничные условия:

Волновые функции должны быть регулярными , т.е.

1)конечными;

2) однозначными;

3) непрерывными.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .

§6 Движение свободной частицы

Частица называется свободной, если на нее не действуют силовые поля, т.е. U = 0.

Уравнение Шредингера для стационарных состояний в этом случае:

Его решение: Ψ(x )=А е ikx , где А = const , k = const

И собственные значения энергии:

Т.к. k может принимать любые значения, то, следовательно, и Е принимает любые значения, т.е. энергетический спектр будет сплошным.

Временная волновая функция

(- уравнение волны)

т.е. представляет плоскую монохромную волну де Бройля.

§7 Частица в “потенциальной яме” прямоугольной формы.

Квантование энергии.

Найдем собственные значения энергии и соответствующие им собственные функции для частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Предположим что, частица может двигаться только вдоль оси x . Пусть движение ограничено непроницаемыми для частицы стенками x = 0, и x = ?. Потенциальная энергия U имеет вид:

Уравнение Шредингера для стационарных состояний для одномерной задачи

За пределы потенциальной ямы частица попасть не сможет, поэтому вероятность обнаружения частицы вне ямы равна 0.Следовательно, и Ψ за пределами ямы равна 0 .Из условий непрерывности следует, что Ψ = 0 и на границах ямы т.е.

Ψ(0) = Ψ(?) = 0

В пределах ямы (0 £ x £ l ) U = 0 и уравнение Шредингера.

введя получим

Общее решение

Пример . Пучок 1 эВ нейтронов падает на кристалл. Брэгговские рефлексы 1-го порядка наблюдаются при 11,8о . Чему равно расстояние между кристаллическими плоскостями?

Решение. Дифракция низкоэнергетических электронов аналогична дифракции рентгеновского излучения. Условие

Брэгга n λ =2d Sinθ , где индексn =1 для дифракции 1-го порядка.

λ =2d Sinθ

2 mEk

d =

2 Sinθ

2 Sinθ

2 Sinθ

6,63*1034 Дж

d =

*10− 27 кг *1,60 *10− 19 Дж

7,0 *10− 11 м

2Sin (11,80 )

3. ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ ГЕЙЗЕНБЕРГА

Из квантовой механики вытекает, что не все физические величины могут одновременно иметь точные значения (принцип неопределённости).

Неопределённости принцип – фундаментальное положение квантовой теории, утверждающее, что характеризующие систему дополнительные физические величины (например, координата и импульс) не могут одновременно принимать точные значения. Отражает двойственную корпускулярно-волновую природу частиц материи (электронов, протонов и т.д.).

Принцип неопределённости Гейзенберга - закон, устанавливающий ограничение на точность (почти) одновременного измерения переменных состояния, например положения и импульса частицы. Точно определяет меру неопределённости, давая нижний (ненулевой) предел для произведения дисперсий измерений.

Неопределённостей соотношения – фундаментальные соотношения квантовой механики, устанавливающие предел точности одновременного определения канонически-сопряжённых динамических переменных, характеризующих квантовую систему: координата – импульс, действие-угол и т.д.

Это - один из основных постулатов квантовой механики, установленный В.Гейзенбергом в 1927 при анализе мысленного эксперимента по измерению координаты квантового объекта с помощью «гамма-микроскопа».

Принцип неопределённости Гайзенберга устанавливает предел одновременного знания на то, где чтото находится и как быстро оно движется. Формально это записывается

рх * х≥ р

py * y≥ h

pz * z≥ h

E* t≥ h

где р х ,х – неточности в х -компоненте импульса и х координате, соответственно, в то время какt – время жизни частицы иE – неточность в её общей энергии. Эти пределы знаний не связаны с ограничениями со стороны измерительных инструментов. Фундаментальные пределы существуют даже для идеальных и абсолютно точных инструментов.

Пример. Рассмотрим электрон с кинетической энергией 5 эВ. Его скорость

v =

2E k

2 * 5 * (1,602 *10− 19 ) Дж /эВ

1,33*106

м/ с

9,11*10− 31 кг

Тогда импульс

p =mv =1,21*10-24 кг*м/с

Пусть ошибка измерения составляет 1%. Тогда из принципа неопределённости:

x =

1,06

*10− 34

Дж / с = 8,8 *10− 9 м

*10− 26

кг м/ с

Неточности при одновременном определении дополнительных величин связаны с соотношением неопределённостей, которое для неточностей х ир х в определении координатых и проекции на неё импульса р имеет вид неравенства:

px

x ≥

Замечание 1. В некоторых рассмотрениях «неопределенность» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что, в случае нормального распределения переменных, приводит для произведения неопределенностей к большей нижней границеh/2π .

Замечание 2 . Здесь

X = (X− X) 2 1/ 2 , P= (P− P) 2 1/ 2 . (13)

То есть в соответствии с вероятностной интерпретацией квантовой механики, под неточностями координаты и импульса понимают среднеквадратичные отклонения от этих наблюдений.

Это неравенство даёт несколько возможностей - состояние может быть таким, что x может быть измерен с высокой точностью, но тогдаp будет известен только приблизительно, или наоборотp может быть определен точно, в то время какx - нет. Во всех же других состояниях, иx иp могут быть измерены с «разумной» (но не произвольно высокой) точностью. В повседневной жизни мы обычно не наблюдаем неопределенность потому, что значениеh чрезвычайно мало.

В 1929 Х.П.Робетсон показал, что

x2

p x 2≥

h2

х и

х определяются как

среднеквадратичные отклонения:

x 2=

(x i − x )2

px 2

(p xi− p x) 2

Он же доказал, что равенство в (9) достигается только для квантовых состояний, описываемых гауссовыми волновыми пакетами. Э.Шрёдингер предложил более общую формулу для случая коррелированных состояний.

Замечание 1. Принцип неопределенности не относится только к координате и импульсу. В своей общей форме, он применим к каждой паресопряженных переменных . В общем случае, и в отличие от случая координаты и импульса, обсужденного выше, нижняя граница произведения неопределенностей двух сопряженных переменных зависит от состояния системы. Принцип неопределенности становится тогда теоремой в теории операторов.

Замечание 2. Соотношение неопределенности Гейзенберга с необходимостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положительное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения.

Соотношение неопределенностей позволяет оценить, в какой мере можно применять к микрочастицам понятия классической механики. Оно показывает, что к микрообъектам неприменимо классическое понятие траектории, так как движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости.

Отношение неопределенности между двумя ортогональными компонентами оператора полного углового момента частицы:

Ji

J j ≥

Jk

где i, j ,k отличны иJ i обозначает угловой момент вдоль осиx i .

Отношение неопределенности между энергией Е и временемt требует особого рассмотрения, т.к. по смыслу оно отличается от выражения (3). Дело в том, что не существует оператора, представляющего время, поэтому время не является динамической переменной и должно рассматриваться как параметр.

Е t ≥

Для нестационарных состояний с характерным разбросом энергии Е под величинойt в (16) следует понимать промежуток времени, в течение которого существенно (на величину соответствующей дисперсии) изменяются средние значения физических величин, характеризующих систему. Пусть микрообъект нестабилен иt – время его жизни. Энергия микрообъекта в данном состоянии должна иметь неопределенностьE . Если состояние стационарно (t→ ), то энергия микрообъекта точно определена

E =0.

Обычно Ур(16) трактуется как невозможность точного определения энергии квантовой системы (Е =0) за ограниченный интервал времениt . Н.Бор обращал внимание на невозможность определить понятие монохроматической волны в данный момент времени. Другая трактовка тесно связана с понятием квазистационарного состояния. В этом случаеЕ – неопределённость значения, которое приобретает энергияЕ , рассматривающаяся как динамическая характеристика квантовой системы, изменяющаяся во времени, аt

– интервал времени – характеризующий эволюцию Е в интервале значениеЕ . Для возбуждённых квантовых систем (например, атома или молекулы) неопределённость энергии состоянияЕ (естественная ширина уровня) непосредственно связана с его временем жизни с помощью (16).

Рассмотрим некоторые примеры применения соотношения неопределённости.

Пример 1 . Обратимся к квантованным уровням энергии атома водорода по Бору. Пусть электрон находится на уровнеE 1 . Чтобы перейти на уровеньE 2 , электрон должен поглотить фотон с энергией (E 2 - E 1 ) и никакой другой. Возникает вопрос, каким образом электрон производит «выбор» нужного фотона из падающего потока фотона? Ведь для этого он должен побывать на уровнеE 2 заранее, то есть «знать»E 2 . Получаем замкнутый логический круг.

Теперь вопрос о том, что происходит сначала – поглощение фотона или переход электрона – теряет свой смысл. Если до и после взаимодействия с излучением имеем связанный электрон с энергией E 1 иE 2 , то во время излучения есть единая квантово - механическая система, включающая в себя и электрон и фотон. Эта система существует конечное время и, согласно (7), не может иметь определенной энергии. Во время взаимодействия электрона с фотоном нет ни электрона, ни фотона, а есть нечто единое целое без уточнения деталей.

Пример 2 . Почему электрон, двигаясь ускоренно, не излучает и не падает на ядро, аннигилируя? Падение электрона на ядро означает существенное уменьшение неопределенности его координаты, так как размер атома ≈10-8 см, а ядра ≈10- 12 см. Следовательно, импульс должен «размываться». То есть при падении электрона на ядро его импульс должен увеличиваться, для чего требуются затраты энергии. Расчеты показывают, что для такой «локализации» электрона нужна энергия порядка энергии связи нуклонов.

Среди физических толкований соотношения неопределённости можно выделить три уровня, которым в англоязычной литературе соответствуют три различных термина: uncertainty, indeterminateness, indeterminacy. Наиболее часто соотношения неопределённости (uncertainty relations) трактуют как ограничение на экспериментально достижимую точность измерения характеристик квантовых объектов, обусловленное неадекватностью классических приборов целям квантовых измерений.

Отношения неопределенности Гейзенберга - это теоретический предел точности любых измерений. Одновременно она указывает границу возможного использования классических представлений для описания событий в микромире. Любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпусулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, верен в случае, когдани одно из этих двух описаний не является полностью и исключительно подходящим.

Другое толкование (indeterminateness) исходит из предпосылки, что соотношение неопределённостей есть следствие свойства квантовых объектов, внутренне присущих им, независимо от несовершенства конкретных реализаций экспериментальных установок, предназначенных для измерения этих свойств. Таким внутренним свойством является корпускулярно-волновой дуализм квантовых объектов, т.е. неразделимое сочетание волновых и корпускулярных свойств, равно необходимых для их полного описания. С этой точки зрения, аналоги соотношения неопределённостей хорошо известны, например, в акустике и оптике, задолго до создания квантовой механики.

Второе толкование соотношения неопределённостей значительно шире и плодотворней первого, поскольку оно представляет собой не частное утверждение о границах уточнения характеристик квантовых объектов, а общий принцип неопределённости. Этот принцип является предпосылкой статистической интерпретации квантовой механики и важнейшим примером принципа дополнительности Бора (для этого расширительного толкования соотношение неопределённостей часто используют термин indeterminacy). С точки зрения этого более общего принципа, соотношение неопределённостей трактуется, как способ сохранить классические понятия для описания квантовых систем путём взаимного ограничения области их совместной применимости.

Соотношение неопределённости играет большую эвристическую роль, так как многие результаты задач, рассматриваемых в кантовой механике, могут быть получены и поняты на основе комбинации законов классической механики с соотношением неопределённостей. Важный пример – проблема устойчивости атома. Рассмотрим эту задачу для атома водорода. Пусть электрон движется вокруг ядра (протона) по круговой орбите радиуса r со скоростью v . По закону Кулона сила притяжения электрона к ядру равнаe 2 /r 2 , гдее – заряд электрона, а центростремительное ускорение равноv 2 /r . По второму закону Ньютона,mv 2 /r=e 2 /mv 2 (m-масса электрона), т.е. радиус орбитыr=e 2 /mv 2 может быть сколь угодно малым, еслиv достаточно велика. Но в квантовой механике должно выполняться соотношение неопределённостей. Если допустить неопределённость скорости в пределахv , т.е. неопределённость импульса в пределахp=mv , тоmvr ≥ ħ . Отсюда можно получитьv ≤ e 2 /ħ иr ≥ ħ 2 /me 2 . Следовательно, движение электрона по орбите сr ≤ a Б =ħ 2 /me 2 ≈ 0.5 10-8 невозможно, т.е. электрон не может упасть на ядро – атом устойчив. Величинаа Б и является радиусом атома водорода (Боровским радиусом). Ему соответствует максимально возможная энергия связи атома Е 0 =-е 2 /2а Б ≈ -13,6 эВ, определяющая его минимальную энергию – энергию основного состояния. Исходя из известных размеров атома водорода,а =ħ 2 /me 2 , можно оценить характерную скорость

Само наличие у частицы волновых свойств накладывает определенные ограничения на возможность корпускулярного описания ее поведения. Для классической частицы всегда можно указать ее точное положение и импульс. Для квантового объекта имеем иную ситуацию.

Представим цуг волн пространственной протяженностью - образ локализованного электрона, положение которого известно с точностью . Длину волны де Бройля для электрона можно определить, подсчитав число N пространственных периодов на отрезке :

Какова точность определения ? Ясно, что для слегка отличающейся длины волны мы получим примерно то же самое значение N. Неопределенность в длине волны ведет к неопределенности

в числе узлов, причем измерению доступны лишь . Так как

то отсюда немедленно следует знаменитое соотношение неопределенностей В. Гейзенберга для координат - импульсов (1927 г.):

Точности ради надо заметить, что, во-первых, величина в данном случае означает неопределенность проекции импульса на ось OX и, во-вторых, приведенное рассуждение имеет скорее качественный, нежели количественный характер, поскольку мы не дали строгой математической формулировки, что понимается под неопределенностью измерения. Обычно соотношение неопределенностей для координат-импульсов записывается в виде

Аналогичные соотношения справедливы для проекций радиуса-вектора и импульса частицы на две другие координатные оси:

Представим теперь, что мы стоим на месте и мимо проходит электронная волна. Наблюдая за ней в течение времени , хотим найти ее частоту n . Насчитав колебаний, определяем частоту с точностью

откуда имеем

или (с учетом соотношения )

Аналогично неравенству (3.12) соотношение неопределенностей Гейзенберга для энергии системы чаще используется в виде

Рис. 3.38. Ве́рнер Карл Ге́йзенберг (1901–1976)

Поговорим о физическом смысле этих соотношений. Может сложиться представление, что в них проявляется «несовершенство» макроскопических приборов. Но приборы совсем не виноваты: ограничения носят принципиальный, а не технический характер. Сам микрообъект не может быть в таком состоянии, когда определенные значения одновременно имеют какая-то из его координат и проекция импульса на ту же ось.

Смысл второго соотношения: если микрообъект живет конечное время, то его энергия не имеет точного значения, она как бы размыта. Естественная ширина спектральных липни - прямое следствие формул Гейзенберга. На стационарной орбите электрон живет неограниченно долго и энергия определена точно. В этом - физический смысл понятия стационарного состояния. Если неопределенность в энергии электрона превышает разность энергий соседних состояний

то нельзя точно сказать, на каком уровне находится электрон. Иными словами, на короткое время порядка

электрон может перескочить с уровня 1 на уровень 2 , не излучая фотона, и затем вернуться назад. Это - виртуальный процесс, который не наблюдается и, следовательно, не нарушает закона сохранения энергии.

Похожие соотношения существуют и для других пар так называемых канонически сопряженных динамических переменных. Так, при вращении частицы вокруг некоторой оси по орбите радиусом R неопределенность ее угловой координаты влечет за собой неопределенность ее положения на орбите . Из соотношений (3.12) следует, что неопределенность импульса частицы удовлетворяет неравенству

Учитывая связь момента импульса электрона L с его импульсом L = Rp, получаем , откуда следует еще одно соотношение неопределенностей

Некоторые следствия соотношений неопределенностей

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности , названный теперь его именем:

неопределенность значения координаты x неопределенность скорости > h /m ,

математическое выражение которого называется соотношением неопределенностей Гейзенберга :

Δx х Δv > h /m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка , названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10 -34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx ), тем более неопределенной становится другая переменная (Δv ), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt . За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация , — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

ΔЕ Δt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.

Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

См. Атом Бора), и все теоретики из их числа понимали, что внутри атома происходит нечто странное.

Защитив диплом в 1923 году, Гейзенберг приступил к работе в Гёттингене над проблемами строения атома. В мае 1925 года у него случился острый приступ сенной лихорадки, вынудивший молодого ученого провести несколько месяцев в полном уединении на маленьком, отрезанном от внешнего мира острове Гельголанд, и этой вынужденной изоляцией от внешнего мира он воспользовался столь же продуктивно, как Исаак Ньютон многомесячным заключением в карантинном чумном бараке в далеком 1665 году. В частности, за эти месяцы ученым была разработана теория матричной механики — новый математический аппарат зарождающейся квантовой механики . Матричная механика, как показало время, в математическом понимании эквивалентна появившейся год спустя квантово-волновой механике, заложенной в уравнении Шрёдингера , с точки зрения описания процессов квантового мира. Однако на практике использовать аппарат матричной механики оказалось труднее, и сегодня физики-теоретики, в основном, пользуются представлениями волновой механики.

В 1926 году Гейзенберг стал ассистентом Нильса Бора в Копенгагене. Именно там в 1927 году он и сформулировал свой принцип неопределенности — и можно с основанием утверждать, что это стало его самым большим вкладом в развитие науки. В том же году Гейзенберг стал профессором Лейпцигского университета — самым молодым профессором в истории Германии. Начиная с этого момента, он вплотную занялся созданием единой теории поля (см. Универсальные теории) — по большому счету, безуспешно. За ведущую роль в разработке квантово-механической теории в 1932 году Гейзенберг был удостоен Нобелевской премии по физике за создание квантовой механики.

С исторической же точки зрения личность Вернера Гейзенберга, вероятно, навсегда останется синонимом неопределенности несколько иного рода. С приходом к власти партии национал-социалистов в его биографии открылась самая труднопонимаемая страница. Во-первых, будучи физиком-теоретиком, он оказался вовлеченным в идеологическую борьбу, в которой теоретическая физика, как таковая, получила ярлык «жидовской физики», а сам Гейзенберг был публично назван новыми властями «белым евреем». Лишь после ряда личных обращений к самым высокопоставленным лицам в рядах нацистского руководства ученому удалось остановить кампанию публичной травли в свой адрес. Гораздо проблематичнее выглядит роль Гейзенберга в германской программе разработки ядерного оружия в годы второй мировой войны. В то время, когда большинство его коллег эмигрировали или вынуждены были бежать из Германии под давлением гитлеровского режима, Гейзенберг возглавил германскую национальную ядерную программу.

Под его руководством программа всецело сконцентрировалась на постройке ядерного реактора, однако у Нильса Бора при его знаменитой встрече с Гейзенбергом в 1941 году сложилось впечатление, что это лишь прикрытие, а на самом деле в рамках этой программы разрабатывается ядерное оружие. Так что же произошло на самом деле? Действительно ли Гейзенберг умышленно и по велению совести завел германскую программу разработки атомной бомбы в тупик и направил ее на мирные рельсы, как он впоследствии утверждал? Или просто он допустил какие-то просчеты в своем понимании процессов ядерного распада? Как бы то ни было, Германия атомного оружия создать не успела. Как показывает блестящая пьеса Майкла Фрэйна (Michael Frayn) «Копенгаген», эта историческая загадка, вероятно, даст достаточно материалов еще не для одного поколения беллетристов.

После войны Гейзенберг выступил активным сторонником дальнейшего развития западногерманской науки и ее воссоединения с международным научным сообществом. Его влияние послужило важным инструментом, позволившим добиться безъядерного статуса вооруженных сил Западной Германии в послевоенный период.

Соотношения неопределённостей
Uncertainty relations

Соотношения неопределённостей – фундаментальные соотношения квантовой механики, устанавливающие предел точности одновременного определения так называемых дополнительных физических величин, характеризующих систему (например, координаты и импульса). В упрощённой формулировке эти соотношения утверждают, что дополнительные физические величины не могут быть одновременно точно определены. Неопределённостей соотношения являются следствием двойственной, корпускулярно-волновой природы частиц материи, отражением вероятностной (статистической) сути квантовой механики.
Неопределённостей соотношения имеют вид неравенств, например, ΔxΔp > ћ = h/2π, где Δx – неопределённость координаты (частицы или системы), Δp – неопределённость её импульса, а h = 6.6·10 -34 Дж. с = 4.1·10 -15 эВ. с - постоянная Планка. Отсюда видно, что произведение неопределённостей координаты и импульса не может быть меньше ћ, и никаким усовершенствованием методов наблюдения нельзя преодолеть этот рубеж. Увеличение точности определения координаты неизбежно ведёт к потере точности определения импульса. Предельная точность одновременного определения координаты и импульса даётся соотношением Δx·Δp ≈ ћ.
Другая важная пара дополнительных физических величин – энергия Е и время t. Соотношение неопределённостей для них имеет вид ΔЕ·Δt > ћ. Это соотношение для релятивистских системы или частиц (двигающихся со скоростью близкой к скорости света с) может быть получено из соотношения неопределённостей для координаты и импульса простым преобразованием: Δx/с·Δpс = ΔtΔЕ > ћ. Полученное соотношение для времени и энергии можно трактовать следующим образом. Для того, чтобы определить энергию частицы (системы) с точностью ΔЕ, необходимо проводить измерения в течение промежутка времени Δt > ћ/ΔЕ. Следствием этого соотношения является возможность виртуальных (ненаблюдаемых) процессов, лежащих в основе механизма взаимодействия частиц в квантовой теории поля. Две частицы взаимодействуют, обмениваясь с нарушением баланса энергии на величину ΔЕ виртуальным (ненаблюдаемым) переносчиком взаимодействия, существующим в течение времени Δt < ћ/ΔЕ.
Другая трактовка соотношения ΔЕΔt ≈ ћ связана с понятием времени жизни нестабильного (распадающегося состояния системы или частицы). Так, если квантовая система в дискретном энергетическом состоянии живёт в среднем время τ ≈ Δt, то энергетическая ширина уровня Г даётся соотношением Г ≈ ΔЕ ≈ ћ/Δt ≈ ћ/τ.
В силу крайней малости константы Планка ћ, соотношения неопределённостей не играют практически никакой роли для макроскопических тел.

Поделиться: