Химический элемент масса одного из стабильных изотопов. Стабильные изотопы – на службе здоровья

Малюгина 10. Стабильные и нестабильные изотопы. Радиоактивность.

Все изотопы подразделяются на стабильные и нестабильные (радиоактивные) .

Стабильные изотопы не подвергаются радиоактивному распаду, поэтому они и сохраняются в природных условиях.

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминия , в природе встречается только один стабильный изотоп, а остальные изотопы неустойчивы. У некоторых элементов, наряду со стабильными, имеются и долгоживущие радиоактивные изотопы. Это 4019K, 8737Rb, 11549In и др.

Радиоактивные изотопы подразделяются, в свою очередь, на естественные и искусственные - и те и другие самопроизвольно распадаются, испуская при этом α - или β-частипы до тех пор, пока не образуется стабильный изотоп. Искусственные радиоактивные изотопы получают с помощью ядерных реакций. Все они неустойчивы и в результате радиоактивного распада превращаются в изотопы других элементов.

системе химических элементов в квадратных скобках. По химическим свойствам радиоактивные изотопы почти не отличаются от стабильных. Поэтому, они служат в качестве “меченых” атомов, позволяющих по измерению их радиоактивности следить за поведением всех атомов данного элемента и за их передвижением. Радиоактивные изотопы широко применяются в научных исследованиях, в промышленности, сельском хозяйстве , медицине, биологии и химии. В настоящее время их получают в больших количествах.

Самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, при котором происходит испускание элементарных частиц, называется радиоактивностью. Радиоактивность также сопровождается образованием нового химического элемента.

Процессы, приводящие к образованию нового химического элемента, называются ядерными .

Вопросы для самоконтроля

1. На какие группы по устойчивости классифицируют изотопы?

2. Что такое радиоактивность?

3. На какие группы по происхождению делят радиоактивные изотопы?

4. Сколько науке известно радиоактивных изотопов?

5. Что такое «меченые» атомы?

6. Какие особенности имеют химические элементы, чьи атомные массы в периодической системе указаны в квадратных скобках?

7. Назовите нестабильные лантаноиды.

8. Назовите нестабильный элемент I группы главной подгруппы.

9. Какие процессы называют ядерными?

Посмотреть ответ

1. На стабильные и радиоактивные.

2. Самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, при котором происходит испускание элементарных частиц.

3. На естественные и искусственные

4. Около 1500

5. Это изотопы одного элемента, которые заметно отличаются от других, каким-то свойством, которое позволяет их отследить среди других менее заметных изотопов. Таким свойством может служить их радиоактивность.

6. Это химические элементы, у которых все изотопы нестабильные (радиоактивные).

7. Прометий (61Pm)

8. Франций (87Fr)

9. Процессы, приводящие к образованию нового химического элемента.

К ак известно, изотопами называются разновидности атомов химического элемента, в ядрах которых содержатся одинаковые количества протонов (Z ) и различные – нейтронов (N ). Сумма А = Z + N – массовое число – служит важнейшей характеристикой изотопа. Явление изотопии открыл в декабре 1913 г. английский радиохимик Ф.Содди у радиоактивных элементов конца периодической системы. Затем оно было обнаружено у стабильных элементов. Подробнее об истории изотопии см. работы .

Естественные радиоактивные изотопы группируются в три «семейства», родоначальниками которых являются долгоживущие торий-232, уран-238 и уран-235 (их периоды полураспада измеряются миллиардами лет). Завершаются «семейства» стабильными изотопами свинца (Z = 82) с А = 208, 206 и 207 соответственно. В промежутках располагаются короткоживущие изотопы элементов с Z = 81–92, связанные «цепочками» a - и b -распадов . Общее количество членов «семейств» (исключая стабильные разновидности атомов свинца) равно 41.

Посредством различных ядерных реакций было синтезировано более 1600 искусственных изотопов в интервале Z от 1 до 112 (причем для некоторых элементов более 20).

Предметом нашего внимания станут стабильные изотопы. Основная заслуга в их открытии принадлежит английскому физику Ф.Астону. В 1919 г. он установил, что инертный газ неон (атомный вес – 20,2) является смесью двух изотопов с атомными весами 20 и 22. Ученый проводил исследования на протяжении полутора десятилетий и обнаружил 210 стабильных изотопов большинства элементов. Немалый вклад принадлежит американскому ученому А.Демпстеру – 37 изотопов. В работах принимали участие и другие исследователи, но большинство ограничивалось констатацией одного-двух новых видов атомов. Важным событием стало открытие в 1929 г. изотопов кислорода с А , равным 17 и 18, У.Джиоком и Г.Джонстоном (США); Астон же ранее полагал, что существует только 16 О. Наличие у кислорода трех изотопов повлияло на выбор шкалы атомных весов . В 1932 г. Г.Юри, Ф.Брикведде и Г.Мэрфи (США) обнаружили тяжелый изотоп водорода – дейтерий с А = 2. Последним по времени обнаружения (1949) оказался ванадий-50.

Сведения о стабильных изотопах приведены в таблице (см. с. 2). Некоторые из них помечены «звездочкой» (калий-40, ванадий-50, рубидий-87, индий-115, сурьма-123, лантан-138, церий-142, неодим-144, самарий-147, лютеций-176, рений-187, платина-190 и свинец-204): у них обнаружены (или возможны теоретически) b -радиоактивность или a -радиоактивность (Се, Nd, Sm, Pt) c очень большими периодами (> 10 15 лет). Однако фактически их можно рассматривать как стабильные. В таблицу включены также радиоактивные изотопы тория и урана, содержащиеся на Земле в достаточно больших количествах.

Подобная таблица приводится лишь в немногочисленных специальных монографиях. Анализом закономерностей, связанных со стабильными изотопами, занимается специальная дисциплина, которую иногда называют изотопной статистикой .

Таблица содержит 282 стабильных изотопа, количество которых для различных элементов варьируется в широких пределах. Один-единственный вид свойственен 21 элементу с нечетным Z (исключение – бериллий с Z = 4). По два изотопа имеют 20 элементов также с нечетными Z (кроме гелия с Z = 2 и углерода с Z = 6). Шесть элементов – кислород, неон, магний, кремний, аргон и калий – представлены тремя изотопами, у всех остальных элементов с четными Z насчитывается от 4 до 10 изотопов. Своеобразными «рекордсменами» оказываются кадмий и теллур (по 8 изотопов), ксенон (9) и олово (10). В таблице отсутствуют элементы с Z = 43 (технеций) и Z = 61 (прометий). Они не имеют стабильных изотопов и получены искусственно с помощью ядерных реакций. Нет в таблице и изотопов с А , равными 5 и 8.

Большинство изотопов (173) имеют четные А , причем почти все из них содержат в ядрах атомов четные количества Z и N . Изотопов с нечетными А заметно меньше (109). У элементов с четными Z не бывает больше двух изотопов c нечетными А (исключение – Аr с Z = 18 и Се с Z = 58, все их изотопы имеют четные А ).

Совокупность изотопов элемента с определенным значением Z (если их больше одного) называют «плеядой». Распространенность отдельных изотопов в «плеяде» различна. Для «легких» представителей периодической системы (Z < 32) при четных Z преобладают изотопы с меньшими значениями А . У последующих элементов, напротив, природа отдает предпочтение изотопам с большими значениями А . Из двух изотопов с нечетными Z более распространенным является тот, у которого А меньше.

В целом же картина такова. У элементов от водорода до никеля (Z = 28) наблюдается резко повышенная распространенность какого-то одного изотопа. При больших значениях Z , хотя содержание изотопов в «плеяде» различается (иногда довольно существенно), фактор абсолютного «лидерства» уже не проявляется.

Наиболее распространенными в природе элементами являются (% мас. земной коры): кислород (47), кремний (29,5), алюминий (8,05), железо (4,65), кальций (2,96), натрий (2,5), калий (2,5) и магний (1,87). Их суммарное содержание более 99%. Следовательно, на долю остальных приходится менее 1%.

Из этой «восьмерки» алюминий и натрий представлены единственным видом атомов (27 А1 и 23 Na); у других – один из изотопов имеет резко преобладающее содержание (16 О, 28 Si, 56 Fe, 40 Ca, 39 K, 24 Mg). Таким образом, перечисленные изотопы являются тем материалом, из которого фактически построена вся «земная твердь». Главные «компоненты» атмосферы – 14 N и 16 O. Наконец, водное пространство – сочетания того же изотопа кислорода с легким изотопом водорода (1 Н). Водород, кислород вместе с углеродом и азотом входят во все растительные и животные организмы, в связи с чем их выделяют в особую группу элементов – органогенов .

Таким образом получается, что всего десять стабильных изотопов в решающей степени обусловливают бесконечное разнообразие неорганической и органической природы.

П очему почти половина элементов, существующих на Земле, представлены лишь одним или двумя видами атомов? Почему содержания отдельных изотопов в «плеядах», как правило, заметно различаются? Почему, наконец, природа отдает предпочтение разновидностям атомов с четными значениями Z ? Перечень подобных вопросов легко продолжить. Ответы на них с той или иной степенью полноты дает теоретическая ядерная физика. Разумеется, в рамках данной статьи невозможно даже в общих чертах изложить их суть. В связи с этим ограничимся рассмотрением лишь одной, но весьма важной закономерности, во многом определяющей «статистику» стабильных изотопов.

В ядерной физике существует понятие «изобары» – разновидности атомов с одинаковыми А , но различными Z и N . В 1934 г. немецкий ученый Й.Маттаух сформулировал правило: если два изобара отличаются по величинам Z на 1, то один из них должен быть нестабильным . Например, в паре изобаров 40 Ar– 40 К последний радиоактивен. Это правило дает возможность внести определенную ясность в некоторые особенности «изотопной статистики».

Почему у элементов с Z = 43 и 61 нет стабильных изотопов? В принципе они могли бы иметь один или два устойчивых вида атомов. Однако соседние с технецием и прометием элементы (молибден и рутений, неодим и самарий соответственно) представлены в природе большим числом изотопов в широком диапазоне А . Согласно правилу изобаров, вероятные значения А для Z = 43 и 61 оказываются «запрещенными». Когда изотопы технеция и прометия были синтезированы, то выяснилось, что большинство из них характеризуются невысокой продолжительностью жизни.

Те изотопы, которые в таблице помечены «звездочкой», составляют изобарные пары с изотопами соседних элементов (например, 87 Pb с 87 Sr, 115 In c 115 Sn и т. д.), но они радиоактивны в очень малой степени.

На заре эволюционного развития Земли распространенность изотопов различных элементов отличалась от современных. Еще присутствовали многие радиоактивные изотопы с относительно большими периодами полураспада. Постепенно они превращались в стабильные изотопы других элементов, благодаря чему изменялось их содержание в «плеядах». Сохранились лишь «первичные» торий-232, уран-238 и уран-235, но и их земные ресурсы за миллиарды лет уменьшились. Если бы они не были столь долгоживущими, то ныне отсутствовали бы и «вторичные» элементы, изотопы которых составляют радиоактивные «семейства». В таком случае естественной верхней границей периодической системы оказался бы висмут с Z = 83.

Таким образом, правило изобаров играло своеобразную «сортирующую» роль. Оно «отсеивало» разновидности атомов с небольшой продолжительностью жизни, изменяло первоначальный изотопный состав элементов и в конечном счете способствовало окончательному формированию той картины «мира стабильных изотопов», которая представлена в таблице.

Со времени создания Дж.Дальтоном химической атомистики атомный вес (масса) долго был единственной фундаментальной количественной характеристикой элемента. Определение его для многих элементов требовало тщательных экспериментальных исследований и зависело от выбора определенной «точки отсчета» – шкалы атомных весов (кислородной О = 16 или водородной Н = 1). В 1864 г. английский химик Дж.Ньюлендс впервые расположил известные в ту пору элементы в порядке увеличения их атомных весов. Эта естественная последовательность существенно способствовала открытию периодического закона и разработке структуры периодической системы.

Однако в трех случаях возрастание атомных весов нарушалось: кобальт был тяжелее никеля, теллур – йода, аргон – калия. Подобные «аномалии», как считали некоторые исследователи, подрывали основы периодического закона. Сам же Д.И.Менделеев не придавал серьезного значения этим «аномалиям», полагая, что рано или поздно они получат объяснение . Так и случилось в действительности. Однако если «аномалий» было бы не три, а больше, то сама констатация явления периодического изменения свойств элементов оказалась бы не столь очевидной. Но дело в том, что природа ограничила их число.

A r = 1/100(aA 1 + bA 2 + cA 3 ...),

где а , b , с – содержания (в %) в «плеяде» изотопов с массовыми числами A 1 , A 2 , A 3 ... соответственно. Как видно из таблицы, у аргона резко преобладает изотоп с А = 40, тогда как у калия – более легкий с А = 39. Такая же картина наблюдается и для других «аномальных пар» (А = 59 – у кобальта и А = 58 – у никеля; А = 130 – у теллура и А = 127 – у йода). По этой причине атомные массы предшествующих элементов в парах оказываются большими, чем последующих.

Таблица

Массовые числа стабильных изотопов и их относительная распространенность




Примечание. Полужирным выделены элементы, у которых отсутствуют изотопы, а также наиболее распространенный изотоп в «плеяде».

В 1911–1914 гг. была разработана ядерно-электронная модель атома Э.Резерфорда – Н.Бора и доказано А.Ван ден Бруком и Г.Мозли, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома. В результате стало очевидным: ряд химических элементов, выстроенных в порядке возрастания их атомных весов, почти идеально (за исключением «аномалий») совпал с последовательностью элементов, отвечающей монотонному увеличению Z .

Причина этого удивительного совпадения заключается в «фиксированности» изотопного состава существующих на Земле элементов. Мы уже отмечали, что в начале ее эволюции этот состав был иным. Однако он не мог резко отличаться от современного. Следовательно, изначальная распространенность стабильных изотопов была результатом процессов, связанных с фундаментальными событиями, относящимися к сфере астрофизических представлений. Говоря точнее, с проблемой происхождения элементов.

Еще в 1920-х гг. высказывались идеи, что образование элементов происходит в атмосфере звезд, в условиях очень высоких температур и давлений. Позднее стали разрабатываться общие теории происхождения элементов. Одна из них, предложенная в 1948 г. Р.Альфером, Г.Бёте и Г.Гамовым, предполагала, что синтез элементов произошел в результате «взрыва» нейтронной звезды. Освободившиеся нейтроны распадались на протоны и электроны. Протоны и электроны группировались в более сложные системы – атомы различных элементов. Согласно авторам теории, путем последовательного захвата нейтронов и b – -распадов образующихся атомов возникало огромное количество радиоактивных и стабильных изотопов, в том числе и тех, которые ныне существуют на Земле. Причем весь процесс синтеза осуществился за 15 мин (!). Однако эта изящная теория оказалась несостоятельной. Так, изотопы с А = 5 и 8 (они, кстати, отсутствуют в таблице) настолько нестабильны, что распадаются раньше, чем их ядра успевают захватить очередной нейтрон.

В настоящее время доказано, что синтез элементов постоянно происходит в звездах, причем на разных стадиях их эволюции. Те или иные совокупности изотопов образуются благодаря различным ядерным реакциям. Получила достаточно удовлетворительное объяснение космическая распространенность элементов, которая заметно отличается от земной. Так, господствующими в космосе оказываются водород и гелий. Однако по мере увеличения Z это различие становится менее выраженным.

«Каркас» современного изотопного состава элементов на Земле был построен многие миллиарды лет назад, а его «доводка» связана уже с процессами, происходившими на протяжении истории нашей планеты.

В заключение обратим внимание на один важный терминологический «нюанс». Само понятие «изотоп» правомерно, когда речь идет об атомных видах с определенными значениями Z . Если же сопоставляются виды с неодинаковыми Z , то в данном случае использование названия «изотоп» недостаточно оправданно (ведь сравниваются разновидности атомов, располагающихся в различных клетках периодической системы).

Ныне получил широкое распространение термин «нуклид», введенный американским физиком Т.Команом в 1947 г.: «Вид атомов, характеризующийся составом своего ядра, в частности, числом содержащихся в нем протонов и нейтронов». В приведенной таблице поэтому слово «изотопы» можно было бы заменить на «нуклиды». Однако эта замена никоим образом не повлияла бы на все последующие рассуждения.

И с п о л ь з о в а н н а я л и т е р а т у р а

1. Астон Ф . Масс-спектры и изотопы. М.: Изд-во иностр. лит-ры, 1948.
2. Вяльцев А.Н., Кривомазов А.Н., Трифонов Д.Н . Правило сдвига и явление изотопии. М.: Атомиздат, 1976.
3. Трифонов Д.Н. , Кривомазов А.Н., Лисневский Ю.И. Химические элементы и нуклиды. Специфика открытий. М.: Атомиздат, 1980.
4. Трифонов Д.Н. Периодическая система элементов. История в таблицах. М.: МП ВХО им. Д.И.Менделеева, 1992, с. 46.
5. Воронцова Е.Р . Атомный вес. История разработки экспериментальных методов. М.: Наука, 1984.
6. Лисневский Ю.И . Атомные веса и возникновение ядерной физики. М.: Наука, 1984.
7. Ранкама К . Изотопы в геологии. М.: Изд-во иностр. лит-ры, 1956.
8. Гайсинский М.Н . Ядерная химия и ее приложения. М.: Изд-во иностр. лит-ры, 1962.
9. Трифонов Д.Н . «Аномальная» история. Химия, 1996, № 26, 28.

Д.Н. ТРИФОНОВ

Если ядра атомов состоят из протонов, то как объяснить устойчивость этих ядер? Ведь одноименно заряженные протоны согласно закону Кулона, отталкиваясь, друг от друга, должны были бы разлететься в разные стороны. Однако в действительности ядра атомов очень прочные образования. Следовательно, кроме Кулоновских сил отталкивания в ядре действуют и силы притяжения. Эти силы назвали ядерными силами. Они действуют между нуклонами, т.е. между протоном и протоном, протоном и нейтроном, нейтроном и нейтроном. Они значительны только на малых расстояниях, сравнимых с поперечником самих ядерных частиц (10-13см). С увеличением расстояния между ядерными частицами ядерные силы быстро уменьшаются и становятся практически равными нулю. Так, если на расстоянии 10-15м ядерные силы приблизительно в 100 раз превышают Кулоновские силы отталкивания, то уже на расстоянии 10-14 м они оказываются мизерными.


Ядерные силы обладают свойством насыщения, т.е. каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов. Поэтому при увеличении числа нуклонов в ядре ядерные силы значительно ослабевают. Этим объясняется меньшая устойчивость ядер тяжелых элементов, в которых содержится значительное количество протонов и нейтронов. Так как с увеличением атомного номера увеличение числа нейтронов преобладает, говорят о «разрыхляющем» действии нейтронов.


Чтобы разделить ядро на составляющие его протоны и нейтроны и удалить их из поля действия ядерных сил, надо совершить работу, т.е. затратить энергию. Эта энергия называется энергией связи ядра. Энергия связи частиц в ядрах составляет несколько миллионов -вольт (эВ). Например, энергия связи ядра гелия составляет 28 МэВ, дейтерия - 2,2 МэВ, азота - 104,5 МэВ, урана - 1800 МэВ. Средняя энергия связи, приходящаяся на один нуклон, называется удельной энергией связи, она равна 7 - 8,5 МэВ. Чтобы «взорвать» ядро, нужно приложить такую же энергию «извне».


В зависимости от того, какие силы в ядре превалируют, ядро является или стабильным или нестабильным. Наибольшую энергию связи, а следовательно и максимальную стабильность имеют ядра, располагающиеся в середине таблицы Д.И. Менделеева (в районе железа). Устойчивость ядра зависит от соотношения количества протонов и нейтронов в ядре. Количество протонов в ядре всегда равно или меньше количества нейтронов. Отношения массы атома к числу протонов должно быть равно или больше 2 (А/Z >,=2). Для легких элементов это отношение равно 2, для тяжелых - 2,6. Чем меньше в ядре нейтронов, тем ядро устойчивее. Если в ядре слишком много протонов или нейтронов, то такие ядра неустойчивы и претерпевают самопроизвольные радиоактивные превращения, в результате которых ядро атома одного элемента превращается в ядро атома другого элемента.


Ядра с четным количеством протонов имеют большую стабильность изотонов и более распространены в природе, чем ядра с нечетным количеством протонов. Наиболее устойчивыми являются ядра с четным количеством протонов и четным количеством нейтронов («четно-четные» ядра). Самыми устойчивыми являются ядра, содержащие по 2, 8, 20, 50, 82 протона и нейтрона («дважды магические ядра»): Не - гелий, О - кислород, Са - кальций.


Наименее устойчивыми являются ядра с нечетным количеством протонов и нечетным количеством нейтронов («нечетно-нечетные» ядра).


В начале и середине таблицы Д.И. Менделеева количество протонов и нейтронов в ядрах в основном равно: 2 4He, 612С, 816О, 1632S и поэтому ядра чаще стабильны. С увеличением атомного номера Z и увеличением количества нейтронов по сравнению с протонами все в большей степени проявляется их «разрыхляющее» действие и ядра становятся менее устойчивыми. У элементов с атомным номером от 84 до 92 ядерные силы уже не способны обеспечивать полную устойчивость ядер. Эти элементы оказываются нестабильными: Rn 222, Ra 226, U 238 и т.д.


Стабильность понижается не только в сторону более тяжелых, но и в сторону более легких элементов: кислород 16, 17, 18 - стабильный, а кислород - 13, 14, 15, 19, 20 - не стабильный; кальций - 40, 42, 43, 44, 46, 48 - стабильный, а кальций - 37, 38, 39, 41, 45, 47, 49, 51 - не стабильный.


Таким образом, низкой стабильностью отличаются ядра с недостаточным и излишним содержанием нейтронов.

Cтраница 2


Таким образом, химические свойства изотопа должны давать возможность изготовления высокотемпературного радиоактивного топлива, отличающегося высокой плотностью, высокой механической прочностью, высокой термической, химической и радиационной стойкостью.  

Объяснять, какую роль играют химические свойства изотопа и тип его радиоактивности при определении разрушительного воздействия излучения этого изотопа на биологические системы.  

Мы указывали выше, что химические свойства изотопов должны быть одинаковыми, так как электрический заряд их ядер одинаков. Однако это верно только в первом приближении. Наибольшие отклонения от этого правила наблюдаются у изотопов водорода. Дело в том, что легкий водород 1 и тяжелый водород, или дейтерий 2, по массе значительно отличаются один от другого. Это проявляется в разнице между постоянными равновесия, от которых зависят химические реакции с тем или иным изотопом.  

В первом из них основную роль играют химические свойства изотопов, а их излучение является только сигналом, указывающим на место нахождения данного вещества. В этом случае радиоизотопы выполняют роль меченых атомов. Меткой радиоизотопа является его радиоактивность, которую сравнительно легко можно обнаружить приборами. Все же химические свойства радиоизотопа не отличаются от свойств стабильных изотопов того же элемента.  

Вследствие одинаковости положительного заряда ядра и структуры электронных оболочек химические свойства изотопов настолько сходны, что в подавляющем большинстве случаев их можно считать практически тождественными. Поэтому разделение - изотопов обычно основывается на различии тех их физических свойств, которые непосредственно зависят от массы атомов. Наиболее совершенно такое разделение достигается в масс-спектрографе, где разделяется, однако.  

Вследствие одинаковости положительного заряда ядра и структуры электронных оболочек химические свойства изотопов настолько сходны, что - в подавляющем большинстве случаев их можно считать практически тождественными. Поэтому разделение изотопов обычно основывается на различии тех их физических свойств, которые непосредственно зависят от м-айссы атомов.  

Будучи физиком, Мак-Миллан чувствовал себя недостаточно компетентным, чтобы установить химические свойства изотопа, которые позволили бы дать однозначную идентификацию этого элемента.  

Способность радиоактивных изотопов находиться в коллоидном состоянии не является какой-то их особенностью, а определяется химическими свойствами изучаемых изотопов. В настоящее время нет принципиальных возражений против возможности существования истинных коллоидов; для каждого радиоактивного изотопа этот вопрос следует решать в отдельности при определенных условиях его нахождения.  

В основе метода изотопного обмена лежит применение обменных реакций, при которых вследствие небольшого различия в химических свойствах изотопов достигается их разделение (константа равновесия К.  

Разделение изотопов, которое в ничтожных количествах осуществляется масс-спектрографом, в более или менее значительных масштабах является весьма трудным делом, так как химические свойства изотопов каждого элемента тождественны. Как уже упоминалось, во всех химических реакциях элементы сохраняют свой природный изотопный состав. Однако косвенно обменные химические реакции при их многократном повторении иногда позволяют получить обогащение элемента его наиболее легким или наиболее тяжелым изотопом; при этом используют то обстоятельство, что когда продукты реакции получаются в виде двухфазной системы (жидкости и ее пара), то процентное содержание легкого изотопа в газообразной фазе оказывается несколько большим, чем в конденсированной.  

Это обусловлено следующими его достоинствами: 1) в отличие от других методов практически любой тип масс-спектрометра может быть применен для анализа с изотопным разбавлением; 2) химическая подготовка анализируемых образцов может быть значительно упрощена в связи с тем, что химические свойства изотопов подобны; 3) метод изотопного разбавления обладает высокой чувствительностью; при определении многих химических элементов достижима чувствительность от 10 - 6 до 10 - 12 г ; 4) метод изотопного разбавления является одним из наиболее точных методов определения содержаний химических элементов.  

Атомы, ядро которых содержит одинаковое число нейтронов, назвают изотопами: : Н - протий, 2D - дейтерий, 3Т - тритий. Химические свойства изотопов идентичны, некоторые физические свойства очень незначительно различаются.  

Однако уже к 1930 г. было обнаружено, что помимо атомов кислорода с массой 16 к. Химические свойства изотопов кислорода одинаковы, а физические хотя и не сильно, но разнятся, поэтому изотопный состав кислорода в различных природных соединениях неодинаков.  

Изотопные индикаторы - вещества, в которых какой-либо химический элемент имеет отличный от природного изотопный состав и которые применяются для маркировки атомов, молекул и других объектов. Химические свойства изотопов данного элемента одинаковы, благодаря чему введение меченых атомов не влияет на протекание физических, химических и биологических процессов. Присутствие радиоактивных изотопов обнаруживается по их радиоактивности. Такая маркировка позволяет, прослеживая перемещение радиоактивности, изучать количество меченого объекта - изотопа данного элемента в средах, в которых содержатся те же элементы, но другого изотопического состава. Например, нанесение железа, содержащего его радиоактивный изотоп Fe, на обыкновенное железо позволяет по распространению активности изучать диффузию железа в железе.  

Например, ядра атомов углерода всегда содержат 6 протонов, но нейтронов могут содержать либо б, либо. Так как химические свойства изотопов в подавляющем большинстве случаев практически тождественны, состав их природной смеси при реакциях обычно не изменяется.  

Установлено, что каждый химический элемент, находящийся в природе – это смесь изотопов (отсюда у них дробные атомные массы). Чтобы понять, чем отличаются изотопы один от другого, необходимо детально рассмотреть строение атома. Атом образует ядро и электронное облако. На массу атома влияют электроны, движущиеся с ошеломительной скоростью по орбиталям в электронном облаке, нейтроны и протоны, входящие в состав ядра.

Определение

Изотопы – это разновидность атомов какого-либо химического элемента. Электронов и протонов в любом атоме всегда равное количество. Поскольку они обладают противоположными зарядами (электроны – отрицательным, а протоны – положительным), атом всегда нейтрален (эта элементарная частица не несет заряда, он равен у нее нулю). При потере или захвате электрона атом теряет нейтральность, становясь либо отрицательным, либо положительным ионом.

Нейтроны не имеют заряда, зато их количество в атомном ядре одного и того же элемента может быть разным. Это никак не сказывается на нейтральности атома, однако влияет на его массу и свойства. Например, в любом изотопе атома водорода есть по одному электрону и протону. А количество нейтронов разное. В протии имеется всего лишь 1 нейтрон, в дейтерии – 2 нейтрона и в тритии – 3 нейтрона. Эти три изотопа заметно отличаются друг от друга по свойствам.

Сравнение

В них разное количество нейтронов, неодинаковая масса и различные свойства. Изотопы обладают идентичным строением электронных оболочек. Это значит, что они довольно близки по химическим свойствам. Поэтому им отведено в периодической системе одно место.

В природе обнаружены изотопы стабильные и радиоактивные (нестабильные). Ядра атомов радиоактивных изотопов способны самопроизвольно превращаться в другие ядра. В процессе радиоактивного распада они испускают различные частицы.

Большинство элементов имеет свыше двух десятков радиоактивных изотопов. К тому же радиоактивные изотопы искусственно синтезированы абсолютно для всех элементов. В естественной смеси изотопов их содержание незначительно колеблется.

Существование изотопов позволило понять, почему в отдельных случаях элементы с меньшей атомной массой обладают большим порядковым номером, чем элементы с большей атомной массой. Например, в паре аргон-калий аргон включает тяжелые изотопы, а калий – легкие изотопы. Поэтому масса аргона больше, чем калия.

Выводы сайт

  1. Они обладают разным числом нейтронов.
  2. Изотопы имеют разную массу атомов.
  3. Значение массы атомов ионов влияет на их полную энергию и свойства.
Поделиться: