Роль неорганических веществ в жизни живых организмов. Органические вещества: примеры. Примеры образования органических и неорганических веществ

Весь наш мир: растения, животный мир, все, что нас окружает, состоит из одних и тех же микроэлементов, которые присутствуют в разных концентрациях во всем и, конечно же, в нашей пище.

Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Для организма человека определенно установлена роль около 30 химических элементов, без которых он не может нормально существовать. Эти элементы называют жизненно необходимыми. Кроме них, имеются элементы, которые в малых количествах не сказываются на функционировании организма, но при определенном содержании являются ядами.

Макроэлементы - содержание в организме более одного грамма: фосфор, калий, сера, натрий, хлор, магний, железо, фтор, цинк, кремний, цирконий - 11 элементов.

Микроэлементы - содержание в организме более одного миллиграмма: рубидий, стронций, бром, свинец, ниобий, медь, алюминий, кадмий, барий, бор (первая десятка микроэлементов), теллур, ванадий, мышьяк, олово, селен, титан, ртуть, марганец, йод, никель, золото, молибден, сурьма, хром, иттрий, кобальт, цезий, германий - 28 элементов. Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Предположения некоторых ученых идут дальше. Они считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определенную биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако, по мере того, как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов.

Организм человека состоит на 60% из воды, 34% приходится на органические вещества и 6% - на неорганические. Основными компонентами органических веществ являются углерод, водород, кислород, в их состав входят также азот, фосфор и сера. В неорганических веществах организма человека обязательно присутствуют 22 химических элемента: Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se.

Например, если вес человека составляет 70 кг, то в нем содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3.

Ученые договорились, что если массовая доля элемента в организме превышает 10-2%, то его следует считать макроэлементом. Доля микроэлементов в организме составляет 10-3-10-5%.



Имеется большое число химических элементов, особенно среди тяжелых, являющихся ядами для живых организмов, - они оказывают неблагоприятное биологическое воздействие. К этим элементам можно отнести: Ba, Ni, Pd, Pt, Au, Ag, Hg, Cd, Tl, Pb, As, Sb, Se.

Встречаются элементы, которые в относительно больших количествах являются ядами, а в низких концентрациях оказывают полезное влияние. Например, мышьяк - сильный яд, нарушающий сердечно-сосудистую систему и поражающий почки и печень, в небольших дозах полезен, и врачи прописывают его для улучшения аппетита. Кислород, необходимый человеку для дыхания, в высокой концентрации (особенно под давлением) оказывает ядовитое действие. Среди примесных элементов имеются и такие, которые в малых дозах обладают эффективными лечащими свойствами. Так, давно было замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра (колларгол) применяют для промывания гнойных ран, мочевого пузыря, при хронических циститах и уретритах, а также в виде глазных капель при гнойных конъюктивитах и бленнорее. Карандаши из нитрата серебра применяют для прижигания бородавок, грануляций. В разбавленных растворах (0,1-0,25%) нитрат серебра используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Ученые считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра - альбуминатов. Серебро пока не относят к жизненно необходимым элементам, однако уже экспериментально установлено его повышенное содержание в мозгу человека, в железах внутренней секреции, печени. В организм серебро поступает с растительной пищей, например с огурцами и капустой.

Весьма интересен вопрос о принципах отбора природой химических элементов для функционирования живых организмов. Не вызывает сомнения, что их распространенность не является решающим фактором. Здоровый организм сам способен регулировать содержание отдельных элементов. При наличии выбора (пищи и воды) животные инстинктивно могут вносить лепту в это регулирование. Возможности растений в данном процессе ограничены.

Органические вещества клетки. Основные жизненно необходимые соединения – белки, жиры и углеводы. Биополимеры.

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры, белки, углеводы, липиды, гормоны, нуклеиновые кислоты, витамины.

Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10тыч. – 100тыс. мономеров.

Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев. Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер.

…А – А – В – А – А – В… регулярный

…А – А – В – В – А – В – А… нерегулярный

Углеводы

Общая формула Сn(H 2 O)m

Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза, а также крахмал. Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе.

Пример: глюкоза, рибоза, фруктоза, дезоксирибоза – моносахариды. Сахароза – дисахариды. Крахмал, гликоген, целлюлоза - полисахариды

Нахождение в природе : в растениях, фруктах, в цветочной пыльце, овощах (чеснок, свекла), картофеле, рисе, кукурузе, зерне пшеницы, древесине…

Их функции:

1) энергетическая: при окислении до СО2 и Н2О высвобождается энергия; избыток энергии запасается в клетках печени и мышц в виде гликогена;

2) строительная: в растительной клетке – прочная основа клеточных стенок (целлюлоза);

3) структурная: входят в состав межклеточного вещества кожи сухожилий хрящей;

4) узнавание клетками др.: в составе клеточных мембран, если разделённые клетки печени смешать с клетками почек, то они самостоятельно разойдутся на две группы благодаря взаимодействию однотипных клеток.

Липиды (липоиды, жиры)

К липидам относятся разнообразные жиры, жироподобные вещества, фосфорлипиды… Все они нерастворимы в воде, но растворимы в хлороформе, эфире…

Нахождение в природе : в клетках животных и человека в клеточной мембране; между клетками – подкожный слой жира.

Функции:

1) теплоизоляционная (у китов, ластоногих …);

2) запасное питательное вещество;

3) энергетическая: при гидролизе жиров выделяется энергия;

4) структурная: некоторые липиды служат составной частью клеточных мембран.

Жиры тоже служат для человеческого организма источником энергии. Их организм откладывает "про запас" и они служат энергетическим источником долговременного пользования. Кроме того, жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Неудивительно, что в традиционном рационе северных народов так много животных жиров. Для людей, занятых тяжелым физическим трудом, затраченную энергию тоже проще всего (хотя и не всегда полезней) компенсировать жирной пищей. Жиры входят в состав клеточных стенок, внутриклеточных образований, в состав нервной ткани. Еще одна функция жиров – поставлять в ткани организма жирорастворимые витамины и другие биологически активные вещества.


Белки

Рисунок - Молекула белка

Белки – биополимеры, мономерами которых являются аминокислоты.

Образование линейных молекул белков происходит в результате реакций аминокислот др. с др.

Источниками белков могут служить не только животные продукты (мясо, рыба, яйца, творог), но и растительные, например, плоды бобовых (фасоль, горох, соя, арахис, которые содержат до 22–23% белков по массе), орехи и грибы. Однако больше всего белка в сыре (до 25 %), мясных продуктах (в свинине 8–15 %, баранине 16–17 %, говядине 16–20 %), в птице (21 %), рыбе (13–21 %), яйцах (13 %), твороге(14 %). Молоко содержит 3 % белков, а хлеб 7–8 %. Среди круп чемпион по белкам – гречневая крупа (13 % белков в сухой крупе), поэтому именно ее рекомендуют для диетического питания. Чтобы избежать "излишеств" и в то же время обеспечить нормальную жизнедеятельность организма, надо, прежде всего, дать человеку с пищей полноценный по ассортименту набор белков. Если белков в питании недостает, взрослый человек ощущает упадок сил, у него снижается работоспособность, его организм хуже сопротивляется инфекции и простуде. Что касается детей, то они при неполноценном белковом питании сильно отстают в развитии: дети растут, а белки – основной "строительный материал" природы. Каждая клетка живого организма содержит белки. Мышцы, кожа, волосы, ногти человека состоят главным образом из белков. Более того, белки – основа жизни, они участвуют в обмене веществ и обеспечивают размножение живых организмов.

Строение:

первичная структура – линейная, с чередованием аминокислот;

вторичная – в виде спирали со слабыми связями между витками (водородными);

третичная – спираль свёрнутая в клубок;

четвертичная – при объединении нескольких цепей, различных по первичной структуре.

Функции:

1) строительная: белки являются обязательным компонентом всех клеточных структур;

2) структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом;

3) ферментативная: катализатором хим. реакций выступает любой фермент – белок, но очень специфичный;

4) транспортная: перенос О 2 , гормонов в теле животных и человека;

5) регуляторная: белки могут выполнять регуляторную функцию, если они являются гормонами. Например инсулин (гормон, поддерживающий работу поджелудочной железы) активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет;

6) защитная: при попадании инородных тел в организме вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом;

7) энергетическая: при недостатке углевода и жиров могут окислиться молекулы аминокислот.

Понятие «жизнь». Основные признаки живого: питание, дыхание, выделение, раздражимость, подвижность, размножение, рост и развитие.

Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. В настоящее время насчитывается более 50 наук внутри комплекса биологического знания, среди них: ботаника, зоология, анатомия, морфология, биофизика, биохимия, экология и т.д. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи .

С этой точки зрения особенно важно понять, какие критерии лежат в основе разделения материи - на живую и неживую.

В классической биологии соперничали две противоположные позиции, объяснявшие сущность живого принципиально различным образом, - редукционизм и витализм.

Сторонники редукционизма считали, что все процессы жизнедеятельности организмов можно свести к совокупности определенных химических реакций. Термин «редукционизм» происходит от латинского слова redaction – отодвигать назад, возвращать. Идеи биологического редукционизма опирались на представления вульгарного механистического материализма, получившего наибольшее распространение в философии 17 – 18 вв. Механистический материализм все процессы, происходящие в природе, объяснял с точки зрении законов классической механики. Адаптация механистической материалистической позиции к биологическому познанию привела к формированию биологического редукционизма. С точки зрения современного естествознания, редукционистическое объяснение не может быть признано удовлетворительным, поскольку выхолащивает саму сущность живого. Наиболее широкое распространение редукционизм получил в 18 веке.

Противоположностью редукционизма является витализм , сторонники которого объясняют специфику живых организмов присутствием в них особой жизненной силы. Термин «витализм» происходит от латинского слова vita – жизнь. Философской базой витализма является идеализм. Витализм не объяснял специфики и механизмов функционирования живого, сводя все отличия органического от неорганического к действию таинственной и непознанной «жизненной силы».

Современная биология основными свойствами живого считает:

1)самостоятельный обмен веществ,

2) раздражимость,

4) способность к размножению,

5) подвижность,

6) приспособляемость к среде

По совокупности этих свойств живое отличается от неживого. Биологические системы – это целостные открытые системы, постоянно обменивающиеся с окружающей средой веществом, энергией, информацией и способные к самоорганизации. Живые системы активно реагируют на изменения окружающей среды, приспосабливаются к новым условиям. Отдельные качества живого могут быть присущи и неорганическим системам, но ни одна из неорганических систем не обладает совокупностью перечисленных свойств.

Существуют переходные формы, которые объединяют в себе свойства живого и неживого, например вирусы. Слово «вирус» образовано от латинского virus – яд. Вирусы были открыты в 1892 году русским ученым Д.Ивановским. С одной стороны, они состоят из белков и нуклеиновых кислот и способны к самовоспроизводству, т.е. имеют признаки живых организмов, но с другой стороны, вне чужого организма или клетки они не проявляют признаков живого – не имеют собственного обмена веществ, не реагируют на раздражители, не способны к росту и размножению.

Все живые существа на Земле имеют одинаковый биохимический состав: 20 аминокислот, 5 азотистых оснований, глюкоза, жиры. Современной органической химии известно более 100 аминокислот. По-видимому, такое небольшое число соединений, образующих все живое, является результатом отбора, который происходил на этапе предбиологической эволюции. Белки, из которых состоят живые системы, представляют собой высокомолекулярные органические соединения. В каждом конкретном белке порядок аминокислот всегда один и тот же. Большинство белков выступает в качестве ферментов – катализаторов химических реакций, происходящих в живых системах.

Значительным достижением классической биологии стало создание теории клеточного строения живых организмов. В комплексе современных биологических знаний существует отдельная дисциплина, занимающаяся изучением клетки – цитология.

Понятие «клетка» было введено в научных обиход английским ботаником Р.Гуком в 1665 году. Рассматривая среды высушенной пробки, он обнаружил множество ячеек, или камер, которые назвал клетками. Однако с момента этого открытия до создания клеточной теории прошло два столетия.

В 1837 году немецкий ботаник М.Шлейден предложил теорию образования растительных клеток. По мнению Шлейдена, важную роль в размножении и развитии клеток играет клеточное ядро, существование которого было устновлено в 1831 году Р.Броуном.

В 1839 году соотечественник М.Шлейдена анатом Т.Шванн, опираясь на экспериментальные данные и теоретические выводы создал клеточную теориюстроения живых организмов. Создание в середине 19 века клеточной теории стало существенным шагом в становлении биологии как самостоятельной научной дисциплины.

Основные положения клеточной теории

1. Клетка – это элементарная биологическая единица, структурно-функциональная основа всего живого.

2. Клетка осуществляет самостоятельный обмен веществ, способны к делению и саморегуляции.

3. Образование новых клеток из неклеточного материала невозможно, размножение клеток происходит только благодаря их делению.

Клеточная теория строения живых организмов стала убедительным аргументом в пользу идеи единства происхождения жизни на Земле и оказала существенное влияние на формирование современной научной картины мира.

Каждая наука насыщена понятиями, при не усвоении которых основанные на этих понятиях или косвенные темы могут даваться очень трудно. Одними из понятий, которые должны быть хорошо усвоены каждым человеком, который считает себя более-менее образованным, есть разделение материалов на органические и неорганические. Не важно, сколько человеку лет, эти понятия в списке тех, с помощью которых определяют общий уровень развития на любом этапе человеческой жизни. Для того чтобы понять, в чем отличия этих двух терминов, сначала нужно выяснить, что собой являет каждый из них.

Органические соединения – что это

Органические вещества – группа химических соединений с неоднородной структурой, в состав которых входят элементы углерода , ковалентно связанных между собой. Исключение составляют карбиды, угольные, карбоновые кислоты. Также одними из составляющих веществ, кроме углерода, есть элементы водорода, кислорода, азота, серы, фосфора, галогена.

Такие соединения формируются благодаря способности атомов углерода перебывать в одинарных, двойных и тройных связях.

Сферой обитания органических соединений являются живые существа. Они могут быть как в составе живых существ, так и появится в результате их жизненной деятельности (молоко, сахар).

Продуктами синтеза органических веществ являются продукты питания, лекарства, элементы одежды, материалы для строения, различное оборудование, взрывчатки, различные виды минеральных удобрений, полимеры, добавки для пищи, косметика и другое.

Неорганические вещества – что это

Неорганические вещества – группа химических соединений, которые в своем составе не имеют элементов углерода, водорода или химических соединений, составляющим элементом которых является углерод. Как органические, так и неорганические являются составляющими клеток. Первые в виде дающих жизнь элементов, другие в составе воды, минеральных веществ и кислот, а также газов.

Что общего между органическими и неорганическими веществами

Что может быть общего между двумя, казалось бы, такими понятиями-антонимами? Оказывается, общее и у них имеется, а именно:

  1. Вещества как органичного, так неорганического происхождения состоят из молекул.
  2. Органические и неорганические вещества можно получить в результате проведения определенной химической реакции.

Органические и неорганические вещества – в чем разница

  1. Органические более известны и исследованы в науке.
  2. Органических веществ в мире числится намного больше. Количество известных науке органических – около миллиона, неорганических – сотни тысяч.
  3. Большинство органических соединений связаны между собой с помощью ковалентного характера соединения, связь неорганических между собой возможна с помощью ионного соединения.
  4. Присутствует отличие и по составу входящих элементов. Органические вещества составляют углеродные, водородные, кислородные, реже – азотные, фосфорные, серные и галогенные элементы. Неорганические – состоят из всех элементов таблицы Менделеева, кроме углерода и водорода.
  5. Органические вещества намного значительнее поддаются влиянию горячих температур, могут разрушаться даже при незначительных температурах. Большинство неорганических менее предрасположены к воздействию сильного нагревания из-за особенностей типа молекулярного соединения.
  6. Органические вещества являются составляющими элементами живой части мира (биосферы), неорганические – неживой (гидросферы, литосферы и атмосферы).
  7. Состав органических веществ является по своему строению сложнее, чем состав неорганических.
  8. Органические вещества отличаются большим разнообразием возможностей химических превращений и реакций.
  9. Из-за ковалентного типа связи между органическими соединениями химические реакции по времени продолжаются несколько дольше, чем химические реакции в неорганических соединениях.
  10. Неорганические вещества не могут быть продуктом питания живых существ, даже более того – некоторые из этого типа сочетаний могут быть смертельно опасны для живого организма. Органические вещества являются продуктом, произведенным живой природой, а также элементом строения живых организмов.

Немного химии

Из 92 химических элементов, известных науке в настоящее время, 81 элемент обнаружен в организме человека. Среди них выделяют 4 основных: С (углерод), Н (водород), О (кислород), N (азот), а также 8 макро- и 69 микроэлементов .

Макроэлементы

Макроэлементы - это вещества, содержание которых превышает 0,005% массы тела. Это Ca (кальций), Cl (хлор), F (фтор). K (калий), Mg (магний), Na (натрий), P (фосфор) и S (сера). Они входят в состав основных тканей - костей, крови, мышц. В сумме основные и макроэлементы составляют 99% массы тела человека.

Микроэлементы

Микроэлементы - это вещества, содержание которых не превышает 0,005% для каждого отдельно взятого элемента, а их концентрация в тканях не превышает 0,000001%. Микроэлементы также очень важны для нормальной жизнедеятельности.

Особой подгруппой микроэлементов являются ультрамикроэлементы , содержащиеся в организме в исключительно малых количествах, это золото, уран, ртуть и др.

На 70-80% организм человека состоит из воды, остальную долю составляют органические и минеральные вещества.

Органические вещества

Органические вещества могут быть образованы (или синтезированы искусственным путем) из минеральных. Основным компонентом всех органических веществ является углерод (изучение структуры, химических свойств, способов получения и практического использования различных соединений углерода составляет предмет органической химии). Углерод является единственным химическим элементом, способным образовывать огромное количество различных соединений (число этих соединений превышает 10 миллионов!). Он присутствует в составе белков, жиров и углеводов, определяющих питательную ценность нашей пищи; входит в состав всех животных организмов и растений.

Помимо углерода органические соединения часто содержат кислород, азот, иногда - фосфор, серу и другие элементы, однако многие из таких соединений обладают свойствами неорганических. Резкой грани между органическими и неорганическими веществами не существует. Основными признаками органических соединений обладают углеводороды - различные соединения углерода с водородом и их производные. Молекулы любых органических веществ содержат углеводородные фрагменты.

Изучением различных типов органических соединений, обнаруженных в живых организмах, их структуры и свойств занимается специальная наука - биохимия .

В зависимости от своей структуры органические соединения подразделяются на простые - аминокислоты, сахара и жирные кислоты, более сложные - пигменты, а также витамины и коферменты (небелковые компоненты ферментов), и самые сложные - белки и нуклеиновые кислоты.

Свойства органических веществ определяются не только строением их молекул, но и числом и характером их взаимодействий с соседними молекулами, а также взаимным пространственным расположением. Наиболее ярко эти факторы проявляются в различии свойств веществ, находящихся в разных агрегатных состояниях .

Процесс превращения веществ, сопровождающийся изменением их состава и (или) строения, называется химической реакцией . Суть этого процесса заключается в разрыве химических связей в исходных веществах и образовании новых связей в продуктах реакции. Реакция считается законченной, если вещественный состав реакционной смеси больше не изменяется.

Реакции органических соединений (органические реакции ) подчиняются общим закономерностям протекания химических реакций. Однако их ход часто более сложен, чем в случае взаимодействия неорганических соединений. Поэтому в органической химии большое внимание уделяется изучению механизмов реакций.

Минеральные вещества

Минеральных веществ в организме человека меньше, чем органических, но они также жизненно необходимы. К таким веществам относятся железо, йод, медь, цинк, кобальт, хром, молибден, никель, ванадий, селен, кремний, литий и др. Несмотря на малую потребность в количественном отношении, качественно они оказывают влияние на активность и скорость всех биохимических процессов. Без них невозможны нормальное усвоение пищи и синтез гормонов. При дефиците указанных веществ в организме человека возникают специфические нарушения, приводящие к характерным заболеваниям. Особенно важны микроэлементы детям в период интенсивного роста костей, мышц и внутренних органов. С возрастом потребность человека в минеральных веществах несколько уменьшается.

Организм человека и животных состоит из органических и неорганических веществ, что определяется тем в каком виде потребляются и усваиваются ими жидкости и продукты питания.

Органические и неорганические вещества имеют общие и различные свойства. Неорганические вещества растворяются в воде и впитываются растениями. В растениях неорганические вещества меняют свое состояние и переходят в органическое вещество. Это тот же самый химический элемент, но его связи меняются после того, как из жидкости он попадает в клетку растения, т.е. в структуру растительного вещества. Органические вещества, попадающие с растительной пищей в организм человека и животных, идентичны химическим элементам живой материи. Усваиваясь организмом из растительной пищи, химические элементы сохраняют природные свойства живой материи, т.е. органическое состояние.

Живой организм может усваивать вещества из воздуха, жидкостей, растительной и животной пищи. С воздухом и водой живой организм получает в основном неорганические вещества, которые могут входить в состав клеток живого организма, если своевременно не были удалены из него. Неорганические вещества отсутствуют в чистой дождевой воде, в дистиллированной воде и в свежеприготовленных соках ягод, фруктов и овощей. При хранении соков ягод, фруктов и овощей химические элементы утрачивают органическое состояние и переходят в неорганические вещества. Только растение имеет свойство длительное время, а именно до полного созревания, сохранять химические элементы в органическом состоянии.

Неорганические соединения .

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

Минеральные вещества .

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

Роль и функция отдельных элементов .

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.



Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

2. Основные жизненно необходимые соединения: белки, углеводы, жиры, витамины.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ.

Биосинтез витаминов свойственен преимущественно зелёным растениям. В животных организмах самостоятельно синтезируются только витамины D и E. Витамины делятся на две группы: водо-растворимые (C, B1, B2, фолиевая кислота, B5, B12, B6, PP) и жирорастворимые (A, D, E, K).

http://schools.keldysh.ru/


Неорганические вещества и их роль в клетке

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Вода как компонент биологических систем выполняет следующие важнейшие функции:

Вода-универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая часть химических реакций в клетке протекает в водных растворах. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.

Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.

Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.

Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.

Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.

Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. Неорганические вещества в клетке, кроме воды, прецспавлевы минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg:+, NH4+) и анионы (С1, Н2Р04 -, НР042-, НС03 -, NO32--, SO4 2-) Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.

Ряд катионов и анионов необходим дпясинтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеоти-дов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

Поделиться: