Формула скорости химической реакции. Факторы влияющие на скорость химической реакции

Скорость химических реакций, ее зависимость от различных факторов

Гомогенные и гетерогенные химические реакции

Химические реакции протекают с различными скоростями: с малой скоростью — при образовании сталактитов и сталагмитов, со средней скоростью — при варке пищи, мгновенно — при взрыве. Очень быстро проходят реакции в водных растворах, практически мгновенно. Смешаем растворы хлорида бария и сульфата натрия — сульфат бария в виде осадка образуется немедленно. Быстро, но не мгновенно, горит сера, магний растворяется в соляной кислоте, этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, налет на медных и бронзовых изделиях, медленно гниет листва, разрушаются зубы.

Предсказание скорости химической реакции, а также выяснение ее зависимости от условий проведения процесса — задача химической кинетики — науки о закономерностях протекания химических реакций во времени.

Если химические реакции происходят в однородной среде, например, в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реакции, как вы знаете, называют гомогенными .

Скорость гомогенной реакции ($v_{гомог.}$) определяется как изменение количества вещества в единицу времени в единице объема:

$υ_{гомог.}={∆n}/{∆t·V},$

где $∆n$ — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); $∆t$ — интервал времени (с, мин.); $V$ — объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентрацию $С$, то

${∆n}/{V}=∆C.$

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

$υ_{гомог.}={∆C}/{∆t}[{моль}/{л·с}]$

если объем системы не меняется. Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называют гетерогенными .

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$υ_{гомог.}={∆C}/{∆t·S}[{моль}/{c·м^2}]$

где $S$ — площадь поверхности соприкосновения веществ ($м^2, см^2$).

Если при какой-либо протекающей реакции экспериментально измерять концентрацию исходного вещества в разные моменты времени, то графически можно отобразить ее изменение с помощью кинетической кривой для этого реагента.

Скорость реакции не является постоянной величиной. Мы указывали лишь некоторую среднюю скорость данной реакции в определенном интервале времени.

Представьте себе, что мы определяем скорость реакции

$H_2+Cl_2→2HCl$

а) по изменению концентрации $Н_2$;

б) по изменению концентрации $HCl$.

Одинаковые ли мы получим значения? Ведь из $1$ моль $Н_2$ образуется $2$ моль $HCl$, поэтому и скорость в случае б) окажется больше в два раза. Следовательно, значение скорости реакции зависит и от того, по какому веществу ее определяют.

Изменение количества вещества, по которому определяют скорость реакции, — это внешний фактор, наблюдаемый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не разлететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли старые связи и смогли образоваться новые, а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферном давлении исчисляются миллиардами за $1$ секунду, т.е. все реакции должны были бы идти мгновенно. Но это не так. Оказывается, что лишь очень небольшая доля молекул обладает необходимой энергией, приводящей к эффективному соударению.

Минимальный избыток энергии, который должна иметь частица (или пара частиц), чтобы произошло эффективное соударение, называют энергией активации $E_a$.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации $E_a$. Когда он мал, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В противном случае требуется толчок. Когда вы подносите спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию $E_a$, необходимую для эффективного соударения молекул спирта с молекулами кислорода (преодоление барьера).

В заключение сделаем вывод: многие возможные реакции практически не идут, т.к. высока энергия активации.

Это имеет огромное значение для нашей жизни. Представьте, что бы случилось, если бы все термодинамически разрешенные реакции могли идти, не имея никакого энергетического барьера (энергии активации). Кислород воздуха прореагировал бы со всем, что может гореть или просто окисляться. Пострадали бы все органические вещества, они превратились бы в углекислый газ $CO_2$ и воду $H_2O$.

Скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирующих веществ в случае гетерогенных реакций. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

Температура

Вам известно, что при повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. Х. Вант-Гофф сформулировал правило:

Повышение температуры на каждые $10°С$ приводит к увеличению скорости реакции в 2-4 раза (эту величину называют температурным коэффициентом реакции).

При повышении температуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко повышается доля активных молекул, участвующих в эффективных соударениях, преодолевающих энергетический барьер реакции.

Математически эта зависимость выражается соотношением:

$υ_{t_2}=υ_{t_1}γ^{{t_2-t_1}/{10}},$

где $υ_{t_1}$ и $υ_{t_2}$ — скорости реакции соответственно при конечной $t_2$ и начальной $t_1$ температурах, а $γ$ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые $10°С$.

Однако для увеличения скорости реакции повышение температуры не всегда применимо, т.к. исходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества.

Концентрация реагирующих веществ

Изменение давления при участии в реакции газообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодействие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирующих веществ, тем больше столкновений и, соответственно, выше скорость реакции. Например, в чистом кислороде ацетилен сгорает очень быстро. При этом развивается температура, достаточная для плавления металла. На основе большого экспериментального материала в 1867 г. норвежцами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Этот закон называют также законом действующих масс.

Для реакции $А+В=D$ этот закон выражается так:

$υ_1=k_1·C_A·C_B$

Для реакции $2А+В=D$ этот закон выражается так:

$υ_2=k_2·C_A^2·C_B$

Здесь $С_А, С_В$ — концентрации веществ $А$ и $В$ (моль/л); $k_1$ и $k_2$ — коэффициенты пропорциональности, называемые константами скорости реакции.

Физический смысл константы скорости реакции нетрудно установить — она численно равна скорости реакции, в которой концентрации реагирующих веществ равны $1$ моль/л или их произведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от температуры и не зависит от концентрации веществ.

Закон действующих масс не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности, и их концентрации обычно являются постоянными.

Например, для реакции горения угля

выражение скорости реакции должно быть записано так:

$υ=k·C_{O_2}$,

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции может сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации. Их называют катализаторами (от лат. katalysis — разрушение).

Катализатор действует как опытный проводник, направляющий группу туристов не через высокий перевал в горах (его преодоление требует много сил и времени и не всем доступно), а по известным ему обходным тропам, по которым можно преодолеть гору значительно легче и быстрее. Правда, по обходному пути можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, которые называют селективными . Ясно, что нет необходимости сжигать аммиак и азот, зато оксид азота (II) находит применение в производстве азотной кислоты.

Катализаторы — это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом . Катализаторы широко используют в различных отраслях промышленности и на транспорте (каталитические преобразователи, превращающие оксиды азота выхлопных газов автомобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализатор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализатор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида марганца (IV):

$2H_2O_2{→}↖{MnO_2(I)}2H_2O_{(ж)}+O_2(г)$

Сам катализатор не расходуется в результате реакции, но если на его поверхности адсорбируются другие вещества (их называют каталитическими ядами ), то поверхность становится неработоспособной, требуется регенерация катализатора. Поэтому перед проведением каталитической реакции тщательно очищают исходные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катализатор — оксид ванадия (V) $V_2O_5$:

$2SO_2+O_2⇄2SO_3$

При производстве метанола используют твердый цинкохромовый катализатор ($8ZnO·Cr_2O_3×CrO_3$):

$CO_{(г)}+2H_{2(г)}⇄CH_3OH_{(г)}$

Очень эффективно работают биологические катализаторы — ферменты . По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью протекают сложные химические реакции. Ферменты отличаются особой специфичностью, каждый из них ускоряет только свою реакцию, идущую в нужное время и в нужном месте с выходом, близким к $100%$. Создание аналогичных ферментам искусственных катализаторов — мечта химиков!

Вы, конечно, слышали и о других интересных веществахингибиторах (от лат. inhibere — задерживать). Они с высокой скоростью реагируют с активными частицами с образованием малоактивных соединений. В результате реакция резко замедляется и затем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизируют растворы пероксида водорода, мономеры для предотвращения преждевременной полимеризации, соляную кислоту, чтобы была возможность ее транспортировки в стальной таре. Ингибиторы содержатся и в живых организмах, они подавляют различные вредные реакции окисления в клетках тканей, которые могут инициироваться, например, радиоактивным излучением.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Если энергия активации мала ($< 40$ кДж/моль), то это означает, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих реакциях участвуют разноименно заряженные ионы, и энергия активации в этих случаях ничтожно мала.

Если энергия активации велика ($> 120$ кДж/моль), то это означает, что лишь ничтожная часть столкновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если энергии активации имеют промежуточные значения ($40-120$ кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимодействие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, идущих на поверхности веществ, т.е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растертый в порошок мел гораздо быстрее растворяется в соляной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется, в первую очередь, увеличением поверхности соприкосновения исходных веществ, а также рядом других причин, например, разрушением структуры правильной кристаллической решетки. Это приводит к тому, что частицы на поверхности образующихся микрокристаллов значительно реакционноспособнее, чем те же частицы на гладкой поверхности.

В промышленности для проведения гетерогенных реакций используют кипящий слой, чтобы увеличить поверхность соприкосновения реагирующих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью кипящего слоя проводят обжиг колчедана; в органической химии с применением кипящего слоя проводят каталитический крекинг нефтепродуктов и регенерацию (восстановление) вышедшего из строя (закоксованного) катализатора.

Мы постоянно сталкиваемся с различными химическими взаимодействиями. Сгорание природного газа, ржавление железа, скисание молока - далеко не все процессы, которые подробно изучаются в школьном курсе химии.

Для протекания одних реакций требуются доли секунд, а для некоторых взаимодействий нужны дни и недели.

Попробуем выявить зависимость скорости реакции от температуры, концентрации, иных факторов. В новом образовательном стандарте на данный вопрос отводится минимальное количество учебного времени. В тестах единого государственного экзамена есть задания на зависимость скорости реакции от температуры, концентрации и даже предлагаются расчетные задачи. Многие старшеклассники испытывают определенные сложности с поиском ответов на эти вопросы, поэтому подробно проанализируем данную тему.

Актуальность рассматриваемого вопроса

Информация о скорости реакции имеет важное практическое и научное значение. К примеру, в конкретном производстве веществ и продуктов от данной величины напрямую зависит производительность аппаратуры, стоимость товаров.

Классификация протекающих реакций

Существует прямая зависимость между агрегатным состоянием исходных компонентов и продуктов, образующихся в ходе гетерогенные взаимодействия.

Под системой принято подразумевать в химии вещество либо их совокупность.

Гомогенной считают такую систему, которая состоит из одной фазы (одинакового агрегатного состояния). В качестве ее примера можно упомянуть смесь газов, несколько различных жидкостей.

Гетерогенной является система, в которой реагирующие вещества находятся в виде газов и жидкостей, твердых тел и газов.

Существует не только зависимость скорости реакции от температуры, но и от того, в какой фазе используются компоненты, вступающие в анализируемое взаимодействие.

Для однородного состава характерно протекание процесса по всему объему, что существенно повышает его качество.

Если исходные вещества находятся в разных фазовых состояниях, в таком случае максимальное взаимодействие наблюдается на границе раздела фаз. К примеру, при растворении активного металла в кислоте, образование продукта (соли) наблюдается только на поверхности их соприкосновения.

Математическая зависимость между скоростью процесса и различными факторами

Как выглядит уравнение зависимости скорости химической реакции от температуры? Для гомогенного процесса скорость определяется количеством вещества, которое вступает во взаимодействие либо образуется в ходе реакции в объеме системы за единицу времени.

Для гетерогенного процесса скорость определяется через количество вещества, реагирующего либо получаемого в процессе на единице площади за минимальный промежуток времени.

Факторы, влияющие на скорость химической реакции

Природа реагирующих веществ - одна из причин разной скорости протекания процессов. Например, щелочные металлы при комнатной температуре образуют с водой щелочи, причем процесс сопровождается интенсивным выделением газообразного водорода. Благородные металлы (золото, платина, серебро) не способны к подобным процессам ни при комнатной температуре, ни при нагревании.

Природа реагирующих веществ - тот фактор, который учитывают в химической промышленности, чтобы повысить рентабельность производства.

Выявлена зависимость между концентрацией реагентов и быстротой протекания химической реакции. Чем она будет выше, тем больше частиц будет сталкиваться, следовательно, процесс будет протекать быстрее.

Закон действующих масс в математическом виде описывает прямо пропорциональную зависимость между концентрацией исходных веществ и быстротой протекания процесса.

Он был сформулирован в середине девятнадцатого века русским химиком Н. Н. Бекетовым. Для каждого процесса определяется константа реакции, которая не связана ни с температурой, ни с концентрацией, ни с природой реагирующих веществ.

Для того чтобы ускорить реакцию, в которой участвует твердое вещество, нужно измельчить его до порошкообразного состояния.

При этом происходит возрастание площади поверхности, что позитивно сказывается на быстроте протекания процесса. Для дизельного топлива применяют специальную систему впрыска, благодаря чему при соприкосновении ее с воздухом скорость процесса сгорания смеси углеводородов существенно возрастает.

Нагревание

Зависимость скорости химической реакции от температуры объясняется молекулярно-кинетической теорией. Она позволяет провести расчет количества соударений между молекулами реагентов при определенных условиях. Если вооружиться подобной информацией, то при обычных условиях все процессы должны протекать мгновенно.

Но если рассмотреть конкретный пример зависимости скорости реакции от температуры, оказывается, что для взаимодействия необходимо сначала разорвать химические связи между атомами, чтобы из них образовались новые вещества. Это требует существенных затрат энергии. Какова зависимость скорости реакции от температуры? Энергия активации определяет возможность разрыва молекул, именно она характеризует реальность процессов. Ее единицами измерения является кДж/моль.

При недостаточном показателе энергии столкновение будет малоэффективным, поэтому оно не сопровождается образованием новой молекулы.

Графическое представление

Зависимость скорости химической реакции от температуры можно представить графически. При нагревании число столкновений между частицами возрастает, что способствует ускорению взаимодействия.

Как выглядит график зависимости скорости реакции от температуры? По горизонтали откладывается энергия молекул, а по вертикали указывается число частиц, имеющих высокий энергетический запас. Графиком является кривая, по которой можно судить о скорости протекания конкретного взаимодействия.

Чем больше будет отличие энергии от среднего показателя, тем дальше располагается от максимума точка кривой, и меньший процент молекул имеет такой запас энергии.

Важные аспекты

Можно ли записать уравнение зависимости константы скорости реакции от температуры? Ее повышение отражается на увеличении скорости процесса. Такая зависимость характеризуется определенной величиной, называемой температурным коэффициентом скорости процесса.

Для любого взаимодействия выявлена зависимость константы скорости реакции от температуры. В случае ее повышения на 10 градусов происходит увеличение скорости процесса в 2-4 раза.

Зависимость скорости гомогенных реакций от температуры можно представить в математическом виде.

Для большинства взаимодействий при комнатной температуре коэффициент находится в диапазоне от 2 до 4. К примеру, при значении температурного коэффициента 2,9 рост температуры на 100 градусов ускоряет процесс почти в 50000 раз.

Зависимость скорости реакции от температуры легко можно объяснить разной величиной энергии активации. Минимальную величину она имеет при проведении ионных процессов, которые определяются только взаимодействием катионов и анионов. Многочисленные эксперименты свидетельствуют о мгновенном протекании подобных реакций.

При высоком значении энергии активации лишь незначительное количество столкновений между частицами будет приводить к осуществлению взаимодействия. При среднем значении энергии активации, реагенты будут взаимодействовать со средней скоростью.

Задания на зависимость скорости реакции от концентрации и температуры рассматриваются только на старшей ступени обучения, часто вызывают у ребят серьезные затруднения.

Измерение быстроты протекания процесса

Те процессы, которые нуждаются в существенной энергии активации, предполагают первоначальный разрыв либо ослабление связей между атомами в исходных веществах. При этом происходит их переход в некое промежуточное состояние, именуемое активированным комплексом. Он является неустойчивым состоянием, довольно быстро распадается на продукты реакции, процесс сопровождается выделением дополнительной энергии.

В простейшем варианте активированный комплекс является конфигурацией атомов с ослабленными старыми связями.

Ингибиторы и катализаторы

Проанализируем зависимость скорости ферментативной реакции от температуры среды. Такие вещества осуществляют функцию ускорителей процесса.

Сами они не являются участниками взаимодействия, их количество после завершения процесса остается без изменений. Если катализаторы способствуют увеличению скорости реакции, то ингибиторы, напротив, замедляют этот процесс.

Суть этого заключается в образовании промежуточных соединений, в результате чего и наблюдается изменение быстроты протекания процесса.

Заключение

В мире ежеминутно происходят разнообразные химические взаимодействия. Как установить зависимость скорости реакции от температуры? Уравнение Аррениуса является математическим объяснением связи константы скорости и температуры. Оно дает представление о тех значениях энергии активации, при которых возможно разрушение либо ослабление связей между атомами в молекулах, распределение частиц в новые химические вещества.

Благодаря молекулярно-кинетической теории можно предсказывать вероятность протекания взаимодействий между исходными компонентами, рассчитывать скорость протекания процесса. Среди тех факторов, которые оказывают воздействие на скорость реакции, особое значение имеет изменение температурного показателя, процентной концентрации взаимодействующих веществ, площадь поверхности соприкосновения, присутствие катализатора (ингибитора), а также природа взаимодействующих компонентов.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Скорость химической реакции – это изме­нение концентрации реагирующих веществ в единицу времени.

При гомогенных реакциях пространством реакции обозначается объем реакционного сосуда, а при гетерогенных — по­верхность, на которой протекает реакция. Концентрацию реагиру­ющих веществ обычно выражают в моль/л — количестве молей вещества в 1 литре раствора.

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, давления, поверхности соприкосновения веществ и ее характера, присутствия катализаторов.


Увеличение концентрации веществ, вступающих в химическое взаимодействие, приводит к увеличению скорости химической реакции. Это происходит потому, что все химические реакции проходят между некоторым количеством реагирующих частицами (атомами, молекулами, ионами). Чем больше этих частичек в объеме реакционного пространства, тем чаще они соударяются и происходит химическое взаимодействие. Химическая реакция может протекать через один или несколько элементарных актов (соударений). На основании уравнения реакции можно записать выражение зависимости скорости реак­ции от концентрации реагирующих веществ. Если в элементарном акте участвует лишь одна молекула (при реакции разложения), зависи­мость будет иметь такой вид:

v = k*[A]

Это уравнение мономолекулярной реакции. Когда в элемен­тарном акте происходит взаимодействие двух разных моле­кул, зависимость имеет вид:

v = k*[A]*[B]

Реакция называется бимолекулярной. В случае соударения трех молекул справедливо выражение:

v = k*[A]*[B]*[C]

Реакция называется тримолекулярной. Обозначения коэффициентов:

v скорость реакции;

[А], [В], [С] — концентрации реагирующих веществ;

k — коэффициент пропорциональности; называется кон­стантой скорости реакции.

Если концентрации реагирующих веществ равны единице (1 моль/л) или их произведение равно единице, то v = k.. Константа скорости зави­сит от природы реагирующих веществ и от температуры. Зависимость скорости простых реакций (т. е. реак­ций, протекающих через один элементарный акт) от кон­центрации описывается законом действующих масс: ско­рость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ, воз­веденных в степень их стехиометрических коэффициен­тов.

Для примера разберем реакцию 2NO + O 2 = 2NO 2 .

В ней v = k* 2 *

В случае, когда уравнение химической реакции не соответствует элементарному акту взаимодействия, а отражает лишь связь между массой вступивших в реакцию и образовавшихся веществ, то степени у концентраций не будут равны коэффициентам, стоящим перед формулами соответствующих веществ в уравне­нии реакции. Для реакции, которая протекает в несколько стадий, скорость реакции оп­ределяется скоростью самой медленной (лимитирующей) стадии.

Такая зависимость скорости реакции от кон­центрации реагирующих веществ справедлива для газов и реакций, проходящих в растворе. Реакции с участием твердых веществ не подчиняются закону действующих масс, так как взаимодействие молекул происходит лишь на поверх­ности раздела фаз. Следовательно, скорость гетерогенной реакции зависит еще и от величины и характера поверхности соприкоснове­ния реагирующих фаз. Чем больше поверхность – тем быстрее будет идти реакция.

Влияние температуры на скорость химической ре­акции

Влияние температуры на скорость химической ре­акции определяется правилом Вант-Гоффа: при повыше­нии температуры на каждые 10 ° C скорость реакции уве­личивается в 2-4 раза. Математически это правило пере­дается следующим уравнением:

v t2 = v t1 * g (t2-t1)/10

где v t1 и v t2 — скорости реакций при тем­пературах t2 и t1; g — температурный коэффициент реак­ции — число, показы­вающее, во сколько раз увеличивается скорость реакции при повышении температуры на каждые 10 ° C. Такая значительная зависимость скорости химической реакции от температуры объясняется тем, что образование новых веществ происходит не при вся­ком столкновении реагирующих молекул. Взаимодействуют только те молекулы (активные молекулы), кото­рые обладают достаточной энергией, чтобы разорвать связи в исходных частицах. Поэтому каждая реакция характеризуется энергетическим барьером. Для его преодо­ления молекуле необходима энергия активации — некоторая из­быточная энергия, которой должна обладать молекула для того, чтобы ее столкновение с другой молекулой привело к образованию нового вещества. С ростом температуры число активных молекул быстро увеличивается, что приводит в резко­му возрастанию скорости реакции по правилу Вант-Гоффа. Энергия активации для каждой конкретной реакции зависит от природы реагирующих веществ.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние катализатора

Одно из наиболее эффективных средств воздействия на скорость химических реакций — использование катализаторов. Катализаторы — это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными по составу и по массе. Иначе говоря, в момент самой реакции катализатор активно участвует в химическом про­цессе, но к концу реакции реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в перво­начальном виде. Обычно роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют процесс. Явление ускорения химических реакций благодаря присутствию катализаторов носит название катализа, а замедления — ингибирования.

Некоторые вещества не обладают каталитическим действием, но их добавки резко увеличивают каталитическую способность катализаторов. Такие вещества называются промоторами . Другие вещества (каталитические яды) уменьшают или даже полностью блокируют действие катализаторов, этот процесс называется отравлением катализатора .

Существуют два вида катализа: гомогенный и гетерогенный . При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверх­ность раздела между катализатором и реагентами.

Особенность гетерогенного катализа состоит в том, что катали­заторы (обычно твердые вещества) находятся в ином фазовом состоя­нии, чем реагенты и продукты реакции. Реакция развивается обычно на поверхности твердого тела.

При гомогенном катализе происходит образование промежуточных продуктов между катализатором и реагирующим веществом в результате реакции с меньшим значением энер­гии активации. При гетерогенном катализе увеличение скорости объясняется адсорбцией реагиру­ющих веществ на по­верхности катализатора. В результате этого их концентрация увеличивается и скорость реакции растет.

Особым случаем катализа является аутокатализ. Смысл его заключается в том, что химический процесс ускоряется одним из про­дуктов реакции.

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называетсяхимическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называетсягомогенной , еслиреагенты находятся в одной фазе. Еслиреагенты находятся в разных фазах, тохимическая реакция называетсягетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов.n A +m B P,

A, B – реагенты, P – продукты, n ,m – коэффициенты.

W =k n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n иm называютсяпорядком реакции по веществу А и B соответственно, а

их сумма (n +m ) –порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частицW =k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt +C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] ,e = 2,71828…

ln[ A ]- ln0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b=

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ]= 0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W =k n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 eRT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентойe ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2− T 1

W (T 2 )= W (T 1 )× γ10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).

Поделиться: