Где применяется разбавленная серная кислота. Эффективные способы переработки сероводорода на нефтеперерабатывающих заводах (производство серной кислоты, элементной серы и др.)

Серная кислота находит самое широкое применение в народном хозяйстве и является главнейшим продуктом основной химической промышленности. В связи с этим наблюдается непрерывный рост производства серной кислоты. Так, если в 1900 г. мировое производство серной кислоты составило 4,2 млн. г, то в 1937 г. ее было получено 18,8 млн. г, а в 1960 г. — более 47 млн. т.
В настоящее время Советский Союз по производству серной кислоты занимает второе место в мире. В 1960 г. серной кислоты в СССР было получено 5,4 млн. г. В 1965 г. производство серной кислоты по сравнению с 1958 г. будет удвоено.
Области применения серной кислоты обусловлены ее свойствами и низкой стоимостью. Серная кислота является сильной, труднолетучей и прочной кислотой, обладающей при умеренных температурах весьма слабыми окислительными и сильными водо отнимающими свойствами.

Основным потребителем серной кислоты является производство минеральных удобрений — суперфосфата и сульфата аммония. Например, на производство только одной тонны суперфосфата (из фторапатита), не содержащего гигроскопической воды, расходуется 600 кг 65-процентной серной кислоты. Производство минеральных удобрений потребляет около половины всей производимой кислоты.
Значительное количество серной кислоты расходуется при переработке жидкого топлива — для очистки керосина, парафина, смазочных масел от сернистых и непредельных соединений, при переработке каменноугольной смолы. Применяется она также при очистке различных минеральных масел и жиров.
Серная кислота широко применяется в различных органических синтезах, например для сульфирования органических соединений — при производстве сульфокислот, различных красителей, сахарина. Для этой цели используется как концентрированная кислота, так и дымящая, а также хлорсульфоновая кислота. Серная кислота применяется в качестве водоотнимающего средства в реакциях нитрования — при производстве нитробензола, нитроклетчатки, нитроглицерина и т. д.
Являясь нелетучей кислотой, серная кислота способна вытеснять летучие кислоты из их солей, что используется в производстве фтористого и хлористого водорода, хлорной кислоты.
Серная кислота часто применяется при переработке (разложении) некоторых руд и концентратов, например титана, циркония, ванадия и иногда ниобия, лития и некоторых других металлов. Поскольку концентрированная серная кислота кипит при довольно высокой температуре и практически не действует на чугун и сталь, указанное разложение можно проводить достаточно полно, применяя дешевую аппаратуру из этих материалов.
Разбавленная горячая серная кислота хорошо растворяет окислы металлов, и ее используют для так называемого травления металлов — очистки их< особенно железа, от окислов.
Серная кислота является хорошим осушающим веществом и с этой целью находит широкое применение в лабораториях и в промышленности. Остаточная влажность при использовании 95-процентной серной кислоты равна 0,003 мг паров воды на 1 л осушаемого газа.

Серная кислота - двухосновная кислота, которая выглядит как маслянистая жидкость, и не имеет запаха. Химическое вещество кристаллизуется при температуре +10 °С. Твердое физическое состояние серная кислота приобретает когда находится в среде с температурой -20 °С. Когда серная кислота вступает в реакцию с водой - выделяется большое количество тепла. Области применения серной кислоты: промышленность, медицина, народное хозяйство.

Применение серной кислоты в промышленности

Пищевая промышленность знакома с серной кислотой в виде пищевой добавки Е513. Кислота выступает в качестве эмульгатора. Данная пищевая добавка используется для изготовления напитков. С её помощью регулируется кислотность. Помимо пищи, Е513 входит в состав минеральных удобрений. Применение серной кислоты в промышленности имеет широкое распространение. Промышленный органический синтез использует серную кислоту для проведения следующих реакций: алкилирование, дегидратация, гидратация. С помощью данной кислоты восстанавливается необходимое количество смол на фильтрах, что используются на производстве дистилированной воды.

Применение серной кислоты в быту

Серная кислота в домашних условиях пользуется спросом среди автолюбителей. Процесс приготовления раствора электролита для автомобильного аккумулятора сопровождается добавление серной кислоты. Работая с данной кислотой следует помнить о правилах безопасности. В случае попадания кислоты на одежду или открытые участки кожи, стоит немедленно промыть их проточной водой. Серная кислота, которая разлилась на металл, может нейтрализоваться с помощью извести или мела. Заправляя автомобильный аккумулятор необходимо придерживаться некой последовательности: постепенно добавлять кислоту к воде, а не наоборот. Когда вода вступает в реакцию с серной кислотой происходит сильное нагревание жидкости, что может приводить к её разбрызгиванию. Поэтому стоит быть особо внимательным, чтобы жидкость не попала на лицо, или в глаза. Кислота должна храниться в плотно закрытой емкости. Важно, чтобы химическое вещество сохранялось в недоступном для детей месте.

Применение серной кислоты в медицине

В медицине нашлось широкое применение солей серной кислоты. К примеру, магний сульфат назначается людям с целью достичь слабительного эффекта. Еще одним производным серной кислоты есть натрий тиосульфат. Лекарственное средство используется в роли противоядия в случае отправления следующими веществами: ртуть, свинец, галогены, цианид. Тиосульфат натрий вместе с соляной кислотой используется для лечения дерматологических заболеваний. Профессор Демьянович предложил союз этих двух препаратов для лечения чесотки. В виде водного раствора, натрий тиосульфат вводят людям, которые страдают аллергическими недугами.

Магния сульфат обладает широким спектром возможностей. Поэтому применяется врачами различных специальностей. В качестве спазмолитика магний сульфат вводят больным при гипертонической болезни. Если у человека присутствуют заболевания желчного пузыря, вещество вводится внутрь для улучшение желчеотделения. Применение серной кислоты в медицине в виде магния сульфата в гинекологической практике встречается часто. Гинекологи помогают роженицам посредством введения магния сульфата внутримышечно, таким способом они обезболивают роды. Помимо всех выше указанных свойств, магний сульфат обладает антисудорожным эффектом.

Применение серной кислоты в производстве

Серная кислота, области применение которой разнообразны, используется так же при производстве минеральных удобрений. Для более удобного сотрудничества, заводы,что занимаются производством серной кислоты и минеральных удобрений, в основном, расположены поблизости друг от друга. Этот момент создает непрерывное производство.

Применение серной кислоты в изготовлении красителей и синтетических волокон занимает второе место по распространенности после производства минеральных удобрений. Многие отрасли промышленности используют серную кислоту в некоторых процессах на производстве. Применение серной кислоты нашло спрос и в быту. Люди пользуются химическим веществом для обслуживания своих автомобилей. Приобрести серную кислоту возможно в магазинах, что имеют специализацию по продаже химических веществ, в том числе у нас по ссылке . Серная кислота транспортируется соответственно правилам перевозки подобного груза. Железнодорожный или автомобильный транспорт перевозит кислоту в соответствующих емкостях. В первом случае в качестве емкости выступает цистерна, во втором - бочка или контейнер.

Промышленный выпуск серной кислоты начался в XV веке – тогда это вещество носило название «купоросное масло». На сегодняшний день является востребованным веществом, которое повсеместно используется в промышленности. Если на заре открытия серной кислоты вся потребность человечества в этом веществе составляла несколько десятков литров, то сегодня счёт идёт на миллионы тонн в год.

Чистая серная кислота (формула H2SO4) в концентрации 100% представляет собой густую бесцветную жидкость. Главное её свойство – высокая гигроскопичность, сопровождающаяся высоким выделением тепла. К концентрированным относятся растворы от 40% — они могут растворить палладий или серебро. В меньшей концентрации вещество менее активно и вступает в реакцию, например, с медью или латунью.

В чистом виде H2SO4 встречается в природе. Например, в Мёртвое озеро на Сицилии серная кислота сочится из дна: в этом случае сырьём для неё вступает пирит из земной коры. Также небольшие капли серной кислоты часто оказываются в земной атмосфере после крупных извержений вулканов, в таком случае H2SO4 может служить причиной существенных изменений климата.

Получение серной кислоты.

Несмотря на наличие серной кислоты в природе, основная её часть производится промышленным способом.

Наиболее распространённым на сегодня является контактный способ производства: он позволяет снизить вред для окружающей среды и получить продукт, максимально подходящий всем потребителям. Менее популярен нитрозный метод производства, подразумевающий окисление оксидом азота.

В качестве сырья при контактном производстве выступают следующие вещества:

  • Сера;
  • пирит (серный колчедан);
  • оксид ванадия (используется в качестве катализатора);
  • сульфиды различных металлов;
  • сероводород.

Перед началом производственного процесса сырьё проходит подготовку, в ходе которой в первую очередь в специальных дробильных машинах измельчается колчедан. Это позволяет ускорить реакцию благодаря увеличению площади соприкосновения активных веществ. Затем пирит очищается: для этого его погружают в большие ёмкости с водой, при этом примеси и пустая порода всплывают на поверхность, после чего их убирают.

Само производство можно разделить на несколько стадий:

  1. Очищенный после измельчения колчедан загружается в печь, где происходит его обжиг при температуре до 800 градусов. Снизу в камеру подаётся воздух по принципу противотока, благодаря чему перит находится в подвешенном состоянии. Раньше такой обжиг проходил в течение нескольких часов, а сейчас процесс занимает несколько секунд. Отходы в виде оксида железа, образовавшиеся в процессе обжига, удаляются и отправляются на металлургические предприятия. В ходе обжига выделяются газы SO2 и O2, а также пары воды. После очистки от мельчайших частиц и паров воды получается кислород и чистый оксид серы.
  2. На втором этапе под давлением происходит экзотермическая реакция, в которой участвует ванадиевый катализатор. Старт реакции происходит при температуре 420 градусов, но для большей эффективности она может быть поднята до 550 градусов. В ходе реакции происходит каталитическое окисление и SO2 превращается в SO
  3. Третий производственный этап заключается в поглощении SO3 в поглотительной башне, в результате чего образуется олеум H2SO4, который разливается в цистерны и оправляется потребителям. Избыток тепла в ходе производства используется для отопления.

В России ежегодно производится около 10 миллионов тонн H2SO4. При этом основными производителями выступают компании, которые также являются её основными потребителями. В основном, это предприятия, выпускающие минеральные удобрения, например, «Аммофос», «Балаковские минудобрения». Так как колчедан, выступающий основным сырьём, является отходом обогатительных предприятий, то его поставщики это Талнахская, а также Норильская обогатительные фабрики.

В мире лидерами по производству H2SO4 являются Китай и США, ежегодно выпускающие соответственно 60 и 30 миллионов тонн вещества.

Применение серной кислоты.

Мировая промышленность ежегодно потребляет около 200 миллионов тонн серной кислоты для производства множества видов продукции. По объёмам использования в промышленности среди всех кислот она занимает первое место.

  1. Производство удобрений. Главным потребителем серной кислоты (около 40%) является производство удобрений. Именно поэтому заводы, производящие H2SO4 строят поблизости заводов, выпускающих удобрения. Иногда они являются частями одного и того же предприятия с общим циклом производства. В этом производстве используется чистая кислота 100% концентрации. На производство тонны суперфосфата, или аммофоса, чаще всего использующихся в сельском хозяйстве, уходит около 600 литров серной кислоты.
  2. Очистка углеводородов. Производство бензина, керосина, минеральных масел также не обходится без серной кислоты. Эта индустрия потребляет ещё около 30% всей производимой в мире H2SO4, которая в данном случае используется для очистки в процессе переработки нефти. Также ей обрабатывают скважины при добыче нефти и увеличивают октановое число топлива.
  3. Металлургия. Серная кислота в металлургии применяется для очистки листового металла, проволоки и всевозможных заготовок от ржавчины, окалины, а также для восстановления алюминия в процессе производства цветных металлов. Используется для травления металлических поверхностей перед покрытием их никелем, хромом или медью.
  4. Химическая промышленность. При помощи H2SO4 производится множество органических и неорганических соединений: фосфорной, плавиковой и других кислот, сульфата алюминия, который используется в целлюлозно-бумажной промышленности. Без неё невозможно производство этилового спирта, лекарств, моющих средств, инсектицидов и других веществ.

Область применения H2SO4 поистине огромна и невозможно перечислить все способы её промышленного использования. Она также применяется для очистки воды, производства красителей, в качестве эмульгатора в пищевой промышленности, при синтезе взрывчатых веществ и для многих других целей.

“Едва ли найдется другое, искусственно добываемое вещество, столь часто применяемое в технике, как серная кислота.

Где нет заводов для ее добывания - немыслимо выгодное производство многих других веществ, имеющих важное технические значение”

Д.И. Менделеев

Серная кислота применяется в разнообразных производствах химической промышленности:

  • минеральных удобрений, пластмасс, красителей, искусственных волокон, минеральных кислот, моющих средств;
  • в нефтяной и нефтехимической промышленности:
для очистки нефти, получения парафинов;
  • в цветной металлургии:
для получения цветных металлов - цинка, меди, никеля и др.
  • в черной металлургии:
для травления металлов;
  • в целлюлозно-бумажной, пищевой и легкой промышленности (для получения крахмала, патоки, отбеливания тканей) и т.д.

Производство серной кислоты

Серную кислоту в промышленности производят двумя способами: контактным и нитрозным.

Контактный способ производства серной кислоты

Серную кислоту контактным способом производят в больших количествах на сернокислотных заводах.

В настоящее время основным методом производства серной кислоты является контактный, т.к. этот метод имеет преимущества перед другими:

Получение продукта в виде чистой концентрированной кислоты, приемлемой для всех потребителей;

- уменьшение выбросов вредных веществ в атмосферу с выхлопными газами

I. Сырьё, используемое для производства серной кислоты.

Основное сырьё

сера - S

серный колчедан (пирит) - FeS 2

сульфиды цветных металлов - Cu 2 S , ZnS , PbS

сероводород – H 2 S

Вспомогательный материал

Катализатор - оксид ванадия – V 2 O 5

II. Подготовка сырья.

Разберём производство серной кислоты из пирита FeS 2 .

1) Измельчение пирита. Перед использованием большие куски пирита измельчают в дробильных машинах. Вы знаете, что при измельчении вещества скорость реакции увеличивается, т.к. увеличивается площадь поверхности соприкосновения реагирующих веществ.

2) Очистка пирита. После измельчения пирита, его очищают от примесей (пустой породы и земли) методом флотации. Для этого измельчённый пирит опускают в огромные чаны с водой, перемешивают, пустая порода всплывает наверх, затем пустую породу удаляют.

III . Основные химические процессы:

4 FeS 2 + 11 O 2 t = 800° C 2 Fe 2 O 3 + 8 SO 2 + Q или сжигание серы S + O 2 t ° C SO 2

2SO 2 + O 2 400-500° С ,V2O5 , p 2SO 3 + Q

SO 3 + H 2 O → H 2 SO 4 + Q

IV . Технологические принципы:

Принцип непрерывности;

Принцип комплексного использования сырья, использование отходов другого производства;

Принцип безотходного производства;

Принцип теплообмена;

Принцип противотока (“кипящий слой”);

Принцип автоматизации и механизации производственных процессов.

V . Технологические процессы:

Принцип непрерывности: обжиг пирита в печи →поступление оксида серы (IV ) и кислорода в очистительную систему →в контактный аппарат →подача оксида серы (VI ) в поглотительную башню.

VI . Охрана окружающей среды:

1) герметичность трубопроводов и аппаратуры

2) газоочистительные фильтры

VII . Химизм производства :



ПЕРВАЯ СТАДИЯ - обжиг пирита в печи для обжига в "кипящем слое".

Для получения серной кислоты используют, в основном,флотационный колчедан - отход производства при обогащении медных руд, содержащих смеси сернистых соединений меди и железа. Процесс обогащения этих руд происходит на Норильской и Талнахской обогатительных фабриках, которые и являются основными поставщиками сырья. Это сырье является более выгодным, т.к. серный колчедан добывают, в основном, на Урале, и, естественно, доставка его может быть очень дорогостоящей. Возможно использование серы , которая также образуется при обогащении руд цветных металлов, добываемых на рудниках. Поставщиками серы являются также ТОФ и НОФ. (обогатительные фабрики).

Уравнение реакции первой стадии

4FeS 2 + 11O 2 t = 800°C → 2Fe 2 O 3 + 8SO 2 + Q

Измельчённый очищенный влажный (после флотации) пирит сверху засыпают в печь для обжига в "кипящем слое". Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800°С. Пирит раскаляется до красна и находится в "подвешенном состоянии" из-за продуваемого снизу воздуха. Похоже это всё на кипящую жидкость раскалённо-красного цвета. В “кипящем слое” не слеживаются даже самые мелкие частицы пирита. Поэтому процесс обжига происходит очень быстро. Если раньше для обжига пирита требовалось 5-6 часов, то теперь - всего несколько секунд. Притом, в “кипящем слое” можно поддерживать температуру 800°С.

За счёт выделяющейся теплоты в результате реакции поддерживается температура в печи. Избыточное количество теплоты отводят: по периметру печи проходят трубы с водой, которая нагревается. Горячую воду используют дальше для центрального отопления рядом стоящих помещений.

Образовавшийся оксид железа Fe 2 O 3 (огарок) в производстве серной кислоты не используют. Но его собирают и отправляют на металлургический комбинат, на котором из оксида железа получают металл железо и его сплавы с углеродом - сталь (2% углерода С в сплаве) и чугун (4% углерода С в сплаве).

Таким образом, выполняется принцип химического производства - безотходность производства.

Из печи выходит печной газ , состав которого: SO 2 , O 2 , пары воды (пирит был влажный!) и мельчайшие частицы огарка (оксида железа). Такой печной газ необходимо очистить от примесей твёрдых частиц огарка и паров воды.

Очистка печного газа от твёрдых частичек огарка проводят в два этапа - в циклоне (используется центробежная сила, твёрдые частички огарка ударяются о стенки циклона и ссыпаются вниз). Для удаления мелких частиц смесь направляем в электрофильтры, где идет очищение под действием тока высокого напряжения ~ 60000 В (используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра, при достаточном накоплении под собственной тяжестью они ссыпаются вниз), для удаления паров воды в печном газе (осушка печного газа) используют серную концентрированную кислоту, которая является очень хорошим осушителем, поскольку поглощает воду.

Осушку печного газа проводят в сушильной башне - снизу вверх поднимается печной газ, а сверху вниз льётся концентрированная серная кислота. Для увеличения поверхности соприкосновения газа и жидкости башню заполняют керамическими кольцами.

На выходе из сушильной башни печной газ уже не содержит ни частичек огарка, ни паров воды. Печной газ теперь представляет собой смесь оксида серы SO 2 и кислорода О 2 .

ВТОРАЯ СТАДИЯ – каталитическое окисление SO 2 в SO 3 кислородом в контактном аппарате.

Уравнение реакции этой стадии:

2 SO 2 + O 2 400-500°С, V 2 O 5 ,p 2 SO 3 + Q

Сложность второй стадии заключается в том, что процесс окисления одного оксида в другой является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO 3).

Из уравнения следует, что реакция обратимая, а, значит, на этой стадии необходимо поддерживать такие условия, чтобы равновесие смещалось в сторону выхода SO 3 , иначе нарушится весь процесс. Т.к. реакция идет с уменьшением объема (3 V ↔2 V ), то необходимо повышенное давление. Повышают давление до 7-12 атмосфер. Реакция экзотермическая, поэтому, учитывая принцип Ле-Шателье, при высокой температуре этот процесс вести нельзя, т.к. равновесие сдвинется влево. Начинается реакция при температуре = 420 градусов, но благодаря многослойности катализатора (5 слоев), мы можем ее повышать до 550 градусов, что значительно ускоряет процесс. Катализатор используют ванадиевый (V 2 O 5). Он дешевый, долго служит (5-6 лет), т.к. наиболее устойчив к действию ядовитых примесей. Кроме того, он способствует сдвигу равновесия вправо.

Смесь (SO 2 и O 2) нагревается в теплообменнике и движется по трубам, между которыми в противоположном направлении проходит холодная смесь, которую надо нагреть. В результате происходит теплообмен : исходные вещества нагреваются, а продукты реакции охлаждаются до нужных температур.

ТРЕТЬЯ СТАДИЯ - поглощение SO 3 серной кислотой в поглотительной башне.

А почему оксид серы SO 3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде: SO 3 + H 2 O →H 2 SO 4 . Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды - это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3 .

Уравнение реакции этого процесса:

NSO 3 + H 2 SO 4 → H 2 SO 4 ·nSO 3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Серная кислота H 2 SO 4 - одна из сильных двухосновных кислот. В разбавленном состоянии она окисляет почти все металлы, кроме золота и платины. Интенсивно реагирует с неметаллами и органическими веществами, превращая некоторые из них в уголь. При приготовлении раствора серной кислоты всегда надо её приливать к воде, а не наоборот, во избежание разбрызгивания кислоты и вскипания воды. При 10 °С затвердевает, образуя прозрачную стекловидную массу. При нагревании 100-процентная серная кислота легко теряет серный ангидрид (триокись серы SO 3) до тех пор, пока её концентрация не составит 98 %. Именно в таком состоянии её обычно и используют в лабораториях. В концентрированном (безводном) состоянии серная кислота - бесцветная, дымящаяся на воздухе (из-за паров), маслянистая жидкость с характерным запахом (Т кипения=338 °С). Она является очень сильным окислителем. Это вещество обладает всеми свойствами кислот:

Химические свойства серной кислоты

H 2 SO 4 + Fe → FeSO 4 + H 2 ;

2H 2 SO 4 + Cu → CuSO 4 + SO 2 +2H 2 O - в этом случае кислота является концентрированной.

H 2 SO 4 + CuO → CuSO 4 + H 2 O

Получающийся раствор синего цвета - CuSO 4 - раствор медного купороса. Серную кислоту еще называют купоросным маслом , так как при реакциях с металлами и их оксидами образуются купоросы. Например, при химической реакции с железом (Fe) - образуется светло-зелёный раствор железного купороса.

Химическая реакция с основаниями и щелочами (или реакция нейтрализации)

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O

Сернистая кислота (или правильнее сказать - раствор сернистого газа в воде) образует два вида солей: сульфиты и гидросульфиты . Эти соли являются восстановителями.

Н 2 SO 4 + NaOH → NaНSO 3 + Н 2 O - такая реакция протекает при избытке сернистой кислоты

Н 2 SO 4 + 2NaOH → Na 2 SO 3 + 2Н 2 O - а эта реакция протекает при избытке едкого натра

Сернистая кислота обладает отбеливающим действием. Всем известно, что подобным действием обладает и хлорная вода. Но отличие заключается в том, что в отличии от хлора сернистый газ не разрушает красители, а образует с ними неокрашенные химические соединения!

Кроме основных свойств кислот сернистая кислота способна обесцвечивать раствор марганцовки по следующему уравнению:

5Н 2 SO 3 +2KMnO 4 → 2 Н 2 SO 4 +2MnSO 4 +K 2 SO 4 +Н 2 O

В этой реакции образуется бледно-розовый раствор, состоящий из сульфатов калия, марганца. Окраска обусловлена именно сульфатом марганца.

Сернистая кислота способна обесцветить бром

Н 2 SO 3 + Br 2 + Н 2 O → Н 2 SO 4 + 2HBr

В этой реакции образуется раствор, состоящий сразу из 2-х сильных кислот: серной и бромной.

Если хранить сернистую кислоту при доступе воздуха, то этот раствор окисляется и превращается в серную кислоту

2Н 2 SO 3 + O 2 → 2Н 2 SO 2

Поделиться: