Воздушные и кабельные линии электропередачи — общая информация об их устройстве. Кабельные и воздушные лэп Для чего нужны линии электропередач

Перемещение электроэнергии осуществляется при помощи ЛЭП. Такие установки должны быть надежды, а также безопасны для людей и экологии. В этой статье говорится о том, что представляет собой воздушная линия электропередачи, а также представлено несколько простых схем.

Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления - специальная опора и линейный вход.

Как выглядит станция ЛЭП

Опоры можно разделить на:

  • промежуточные которые находятся на прямых участках трассы установок, их используют только для удержания кабелей;
  • анкерные в основном монтируются на прямых границах ВЛ;
  • концевые стойки - это подвид анкерных, они ставятся в начале и конце ВЛ. При стандартных условиях функционирования установки, они принимают нагрузку от кабелей;
  • специальные стойки используются для изменения положения кабелей на ЛЭП;
  • декорированные стойки, помимо поддержки, они выполняют роль эстетичной красоты.

Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.

Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы.

При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.

Типы используемых опор

Технические характеристики линий электропередач

Основные параметры ЛЭП:

  • l - промежутки между стойками или опорами ЛЭП;
  • dd - пространство ме­ж­ду со­сед­ни­ми кабельными линиями;
  • λλ - можно расшифровать как протяженность гир­лян­ды ЛЭП;
  • HH - высота стойки;
  • hh - самое малое разрешенное рас­стоя­ние от низкой отметки кабеля до почвы.

Расшифровывать все характеристики установок сможет не каждый. Поэтому за помощью можно обратиться к профессионалу.

Ниже представлена таблица линий электропередач, обновленная в 2010 году. Более полное описание можно находить на форумах электрики.

Номинальное напряжение, кВ
40 115 220 380 500 700
Промежуток l, м 160-210 170-240 240-360 300-440 330-440 350-550
Пространство d, м 3,0 4,5 7,5 9,0 11,0 18,5
Протяженность гирлянды X, м 0,8-1,0 1,4-1,7 2,3-2,8 3,0-3,4 4,6-5,0 6,8-7,8
Высота стойки Н, м 11-22 14-32 23-42 26-44 28-33 39-42
Параметр линии h, м 6-7 7-8 7-8 8-11 8-14 12-24
Количество кабелей в фазе* 1 1 2 2 3 4-6
Объем сечений
проводов, мм2
60-185 70-240 250-400 250-400 300-500 250-700

Чтобы понизить число ава­рий­ных выключений, которые возникают при плохих погодных условиях, линии электростанций снабжаются грозо­за­щит­ны­ми канатами, которые устанавливаются на стойках вы­ше кабелей и используются для подавления пря­мых по­па­да­ний грозы в ЛЭП. Они похожи на металлические оцин­ко­ван­ные мно­го­про­во­лоч­ные тросы или специальные уси­лен­ные алюминиевые кабели малого се­че­ния.

Производятся и используются такие устройства от молний с встроенными в их труб­ча­тый стержень оп­ти­ко-во­ло­кон­ны­ми жилами, которые дают мно­го­ка­наль­ную связь. На территориях с постоянно по­вто­ряю­щи­ми­ся и силь­ны­ми морозами, лед откладывается на провода и образуются ава­рии из-за пробивания воздушных линий при приближении про­вис­ших канатов и кабелей.

Рабочая температура линий электропередач составляет от 150 до 200 градусов. Внутри провода не имеют изоляцию. Они должны обладать высокой степенью проводимости, а также устойчивостью к механическим повреждениям.

Ниже описано, какие линии электропередач используются для передачи электроэнергии.

Виды

ЛЭП используются для перемещения и распространения электроэнергии. Виды линий можно поделить:

  • по виду расположения кабелей - воздушные (находятся на открытом воздухе) и закрытые (в кабель-каналах);
  • по функциям - сверхдальние, для магистралей, распределительные.

Воздушные ЛЭП также можно разделить на подвиды, который зависят от проводников, типа тока, мощности, применяемого сырья. Ниже подробно описаны эти классификации.

Переменного тока

По типу тока ЛЭП можно подразделить на две группы. Первая из них - это линии электропередач постоянного тока. Такие установки помогают свести к минимуму потери при перемещении энергии, потому используются для передачи тока на дальние расстояния. Этот вид ЛЭП достаточно популярен в европейских государствах, но в России такие линии электропередач можно пересчитать по пальцам. Многие железные дороги работают на переменном токе.

Схема передачи энергии

Постоянного тока

Вторая группа - это линии электропередач постоянного тока, в которых энергия всегда одинакова независимо от направления и сопротивления. Почти все установки в России питаются постоянным током. Их проще произвести и эксплуатировать, но потери при перемещении тока очень часто достигают 10 кВт/км за полгода на ЛЭП с напряжением 450 кВ.

Классификация ЛЭП

Такие установки могут классифицироваться по назначению, напряжению, режиму работы и так далее. Ниже подробно описан каждый этот пункт.

По роду тока

В последние годы передача электроэнергии выполняется в основном на переменном токе. Такой метод популярен, потому что, большее количество источников электроэнергии выдают переменное напряжение (за исключением индивидуальных источников, например солнечные батареи), а главным потребителем выступают установки переменного тока.

Схема монтажа проводов ВЛ

Очень часто передача электроэнергии на постоянном токе более благоприятна. Для понижения потерь в ЛЭП, при передаче электрической энергии на любом виде тока, при помощи трансформаторов (ТТ) поднимают напряжение.

Также при выполнении передачи от установки к потребителю на постоянном токе нужно превращать электрическую энергию из переменного тока в постоянный, для этого существуют специальные выпрямители.

По предназначению

По назначению линии электропередач можно разделить на несколько видов. По расстоянию линии делятся на:

  • сверхдальние. На таких ЛЭП напряжение будет свыше 500 киловольт. Их применяют для перемещения энергии на дальние расстояния. В основном они необходимы для того, чтобы объединять разные энергосистемы или их элементы;
  • магистральные. Такие линии бывают с напряжением 220 или 380 кВ. Они объединяют друг с другом большие энергетические центры или разные установки;
  • распределительные. К этому виду относятся системы с напряжением в 35, 110 и 150 кВ. Применяются для объединения районов и малых питающих центров;
  • подводящие электрическую энергию к людям. Напряжение - не выше 20 кВ, самые популярные виды на 6 и 10 кВ. Эти ЛЭП подводят энергию к распределительным точкам, а потом и к людям в дом.

По напряжению

По базисному напряжению такие ЛЭП в основном разделяют на две главные группы. С низким напряжением до 1 кВ. ГОСТами указываются четыре основных напряжения, 40, 220, 380 и 660 В.

С напряжение выше 1 кВ. ГОСТом здесь описано 12 параметров, средние показатели - от 3 до 35 кВ, высокие - от 100 до 220 кВ, самые высокие - 330, 500 и 700 кВ и ультравысокие - больше 1 МВ. Его также называют высоковольтным напряжением.

По системе функционирования нейтралей в электроустановках

Такие установки можно разделить на четыре сети:

  • трехфазные, в которых не присутствует заземление. В основном эта схема применяется в сетях напряжением до 35 кВ, где перемещаются малые токи;
  • трехфазные, в которых есть заземление с помощью индуктивности. Эту установку также называют резонансно-заземленного вида. В таких воздушных линиях применяется напряжение 3-35 кВ, где перемещаются токи большой величины;
  • трехфазные, в которых присутствует полное заземление. Такой режим функционирования нейтрали применяется в воздушных линиях со средним и высоким напряжениями. Здесь нужно использовать трансформаторы тока;
  • глухозаземленная нейтраль. Здесь работают воздушные линии с напряжением меньше 1,0 кВ или больше 220 кВ.

Процесс монтажа

По режиму работы в зависимости от механического состояния

Также бывает и такое разделения ЛЭП, где предусматривается внешнее состояние всех частей установки. Это линии электропередач в хорошем состоянии, где кабели, стойки и другие элементы почти новые. Основной акцент делается на качество кабелей и канатов, на них не должно быть механических повреждений.

Также бывает аварийное положение, где качество кабелей и канатов достаточно низкое. В таких установках необходимо проводить незамедлительный ремонт.

  • линии электропередач хорошего режима работы - все составляющие новые и не повреждены;
  • аварийные линии - при явных видимых повреждениях проводов;
  • линии монтажного вида - в процессе монтажа стоек, кабелей и канатов.

Определять состояние линий электропередач необходимо только опытному электромонтеру.

Если установка аварийная, то это может привести к ряду последствий. Например, энергия будет подаваться не постоянно, возможно короткое замыкание, оголённые провода при соприкосновении могут вызвать пожар. Если ЛЭП вовремя не подверглась монтажу и случились ненепоправимые последствия, то это может грозить огромными штрафами.

Подземные кабельные линии электропередач

Предназначение ВЛ электропередач

Такими ВЛ называются установки, которые используются для перемещения и рас­пределения электрической энергии по кабелям, находящимся на открытом воздухе и удерживающимися, при помощи специальных стоек. ВЛ устанавливаются и используются в самых различных погодных условиях и гео­графической местности, склонны к атмосферному влиянию (осадки, перепады температур, ветры).

Поэтому воздушные линии необходимо устанавливать с учетом погодных факторов, загрязнения атмосферы, требований прокладки (для города, поля, деревни) и прочее. Установка должна соответствовать ряду правил и нормативам:

  • экономически выгодная стоимость;
  • ­высокой электропроводностью, прочностью используемых канатов и стоек;
  • устойчивость к механическим повреждениям, коррозии;
  • быть безопасной для природы ичеловека, не занимать много свободной территории.

Как выглядят изоляторы

Какое напряжение ЛЭП

По определенных характеристикам, можно узнать напряжение линий электропередач по внешнему виду. Первое на что стоит обратить внимание - это изолятор. Чем больше их находится на установке, тем она будет мощнее.

Самые популярные изоляторы воздушных линий 0,4кВ. Их обычного изготавливают из прочного стекла. По их количеству можно определяться в мощности.

ВЛ-6 и ВЛ-10 по форме такой же, но намного крупнее. Кроме штыревого фиксирования, иногда применяют такие изоляторы по аналогу гирлянд по одному/двум образцам.

Обратите внимание! На воздушной линии 35кВ чаще всего устанавливают навесные изоляторы, хотя иногда можно увидеть штыревого вида. Гирлянда складывается из трех-пяти видов.

Число роликов в гирлянде может быть таким:

  • ВЛ-110кВ - 6 роликов;
  • ВЛ-220кВ - 10 роликов;
  • ВЛ-330кВ - 12 роликов;
  • ВЛ-500кВ - 22 ролика;
  • ВЛ-750кВ - от 20 и выше.

Как узнать мощность ЛЭП

Также напряжение можно узнать по числу кабелей:

  • ВЛ-0,4 кВ число проводов от 2 до 4 и выше;
  • ВЛ-6, 10 кВ - всего три кабеля наустановке;
  • ВЛ-35 кВ, 110 кВ - для каждого изолятора свой провод;
  • ВЛ-220 кВ - для каждого изолятора один большой провод;
  • ВЛ-330 кВ - в фазах по два кабеля;
  • ВЛ-750 кВ - от 3 до 5 проводов.

В заключении необходимо отметить, что в современном мире невозможно обойтись без линий электропередач. Именно они снабжают всю страну электричеством. В настоящее время применяют воздушные и кабельные ЛЭП повсеместно.

Транспортировка электрической энергии на средние и дальние расстояния чаще всего производится по линиям электропередач, расположенным на открытом воздухе. Их конструкция всегда должна отвечать двум основным требованиям:

1. надежности передачи больших мощностей;

2. обеспечения безопасности для людей, животных и оборудования.

При эксплуатации под воздействием различных природных явлений, связанных с ураганными порывами ветра, наледью, выпадения инея линии электропередач периодически подвергаются повышенным механическим нагрузкам.

Для комплексного решения задач безопасной транспортировки электрических мощностей энергетикам приходится поднимать провода, находящиеся под напряжением на большую высоту, разносить их в пространстве, изолировать от строительных элементов и монтировать тоководами повышенных сечений на высокопрочных опорах.

Общее устройство и компоновка воздушной ЛЭП


Схематично любую линию передачи электроэнергии можно представить:

    опорами, установленными в грунте;

    проводами, по которым пропускается ток;

    линейной арматурой, смонтированной на опорах;

    изоляторами, закрепленными на арматуре и удерживающими ориентацию проводов в воздушном пространстве.

Дополнительно к элементам ВЛ необходимо отнести:

    фундаменты для опор;

    систему грозозащиты;

    заземляющие устройства.


Опоры бывают:

1. анкерными, предназначенными для выдерживания усилий натянутых проводов и оборудованных натяжными устройствами на арматуре;

2. промежуточными, используемыми для закрепления проводов через поддерживающие зажимы.

Расстояние по грунту между двумя анкерными опорами называется анкерным участком или пролетом, а у промежуточных опор между собой или с анкерной - промежуточным.

Когда воздушная ЛЭП проходит над водными преградами, инженерными сооружениями или другими ответственными объектами, то по концам такого участка устанавливают опоры с натяжными устройствами проводов, а расстояние между ними называют промежуточным анкерным пролетом.

Провода между опорами никогда не натягивают как струну - в прямую линию. Они всегда немного провисают, располагаясь в воздухе с учетом климатических условий. Но при этом обязательно учитывается безопасность их расстояния до наземных объектов:

    поверхностей рельсов;

    контактных проводов;

    транспортных магистралей;

    проводов линий связи или других ВЛ;

    промышленных и других объектов.

Провисание провода от натянутого состояния называют . Она оценивается разными способами между опорами потому, что верхние части оных могут быть расположены на одном уровне или с превышениями.

Стрела провеса относительно самой высокой точки опоры всегда бывает больше, чем у нижней.

Габариты, протяженность и конструкция каждого типа воздушной ЛЭП зависят от типа тока (переменный или постоянный) транспортируемой по ней электрической энергии и величины ее напряжения, которое может быть менее 0,4 кВ или достигать 1150 кВ.

Устройство проводов воздушных линий

Поскольку электрический ток проходит только по замкнутому контуру, то питание потребителей выполняется минимум двумя проводниками. По такому принципу создаются простые воздушные ЛЭП однофазного переменного тока с напряжением 220 вольт. Более сложные электрические цепи передают энергию по трех или четырехпроводной схеме с глухо изолированным или заземленным нулем.

Диаметр и металл для провода подбираются под проектную нагрузку каждой линии. Самыми распространенными материалами являются алюминий и сталь. Они могут выполняться единой монолитной жилой для низковольтных схем или сплетаться из многопроволочных конструкций для высоковольтных ЛЭП.

Внутреннее межпроволочное пространство может заполняться нейтральной смазкой, повышающей стойкость к нагреву или быть без нее.

Многопроволочные конструкции из алюминиевых проводов, хорошо пропускающих ток, создаются со стальными сердечниками, которые предназначены для восприятия механических нагрузок натяжения, предотвращения обрывов.


ГОСТом дается классификация открытых проводов для воздушных ЛЭП и определена их маркировка: М, А, AC, ПСО, ПС, ACKC, АСКП, АСУ, ACO, АСУС. При этом однопроволочные провода обозначаются величиной диаметра. Например, сокращение ПСО-5 читается «провод стальной. выполненный одной жилой с диаметром 5мм». У многожильных проводов для ЛЭП используется другая маркировка, включающая обозначение двумя цифрами, записанными через дробь:

    первая - общая площадь сечения алюминиевых жил в мм кв;

    вторая - площадь сечения стальной вставки (мм кв).

Кроме открытых металлических проводников, в современных воздушных линиях все больше применяются провода:

    самонесущие изолированные;

    защищенные экструдированным полимером, предохраняющим от возникновения КЗ при захлестывании фаз ветром или совершении набросов посторонних предметов с земли.

Воздушные линии с постепенно вытесняют старые неизолированные конструкции. Они все чаще применяются во внутренних сетях, изготавливаются из медных или алюминиевых жил, покрытых резиной с защитным слоем из диэлектрических волокнистых материалов либо полихлорвиниловыми пластикатами без дополнительной внешней защиты.


Чтобы исключить появление коронного разряда большой протяженности провода ВЛ-330 кВ и высшего напряжения расщепляют на дополнительные потоки.


На ВЛ-330 два провода монтируют горизонтально, у линии 500 кВ их увеличивают до трех и размещают по вершинам равностороннего треугольника. Для ВЛ 750 и 1150 кВ применяют расщепление на 4, 5 или 8 потоков соответственно, расположенных по углам собственных равносторонних многоугольников.

Образование «короны» ведет не только к потерям электроэнергии, но и искажает форму синусоидального колебания. Поэтому с ней борются конструктивными методами.

Устройство опор

Обычно опоры создаются для закрепления проводов одной электрической цепи. Но на параллельных участках двух линий может применяться одна общая опора, которая предназначена для их совместного монтажа. Такие конструкции называют двухцепными.

Материалом для изготовления опор могут служить:

1. профилированные уголки из различных сортов стали;

2. бревна строительной древесины, пропитанные составами от загнивания;

3. железобетонные конструкции с армированными прутьями.

Изготовленные из дерева конструкции опор являются самыми дешевыми, но они даже при хорошей пропитке и надлежащем обслуживании служат не более, чем 50÷60 лет.


По техническому исполнению опоры ВЛ выше 1 кВ отличаются от низковольтных своей сложностью и высотой крепления проводов.


Их изготавливают в виде вытянутых призм или конусов с широким основанием внизу.

Любая конструкция опоры рассчитывается на механическую прочность и устойчивость, обладает достаточным проектным запасом к действующим нагрузкам. Но следует учитывать, что при эксплуатации возможны нарушения различных ее элементов в результате коррозии, ударов, несоблюдения технологии монтажа.

Это приводит к ослаблению жесткости единой конструкции, деформациям, а иногда и падениям опор. Часто такие случаи происходят в те моменты, когда на опорах работают люди, выполняя демонтаж или натяжение проводов, создающие переменные осевые усилия.

По этой причине допуск бригады монтеров к работе на высоте с конструкции опор проводится после проверки их технического состояния с оценкой качества ее заглубленной части в грунте.

Устройство изоляторов

На воздушных ЛЭП для отделения токоведущих частей электрической схемы между собой и от механических элементов конструкции опор используют изделия из материалов, обладающие высокими диэлектрическими свойствами с ÷ Ом∙м. Их называют изоляторами и изготавливают из:

    фарфора (керамики);

    стекла;

    полимерных материалов.

Конструкции и габариты изоляторов зависят:

    от величины приложенных к ним динамических и статических нагрузок;

    значения действующего напряжения электроустановки;

    условий эксплуатации.

Усложненная форма поверхности, работающая под воздействием различных атмосферных явлений, создает увеличенный путь для протекания возможного электрического разряда.

Изоляторы, устанавливаемые на воздушных линиях для крепления проводов, подразделяются на две группы:

1. штыревые;

2. подвесные.

Керамические модели

Фарфоровые или керамические штыревые одиночные изоляторы нашли большее применение на ВЛ до 1 кВ, хотя работают на линиях до 35 кВ включительно. Но их используют при условии крепления проводов низких сечений, создающих небольшие тяговые усилия.

Гирлянды из подвесных фарфоровых изоляторов устанавливают на линиях от 35 кВ.


В состав комплекта единичного фарфорового подвесного изолятора входит диэлектрический корпус и шапка, выплавленная из ковкого чугуна. Обе эти детали скрепляются специальным стальным стержнем. Общее количество таких элементов в гирлянде определяется по:

    величине напряжения ВЛ;

    конструкции опоры;

    особенностям эксплуатации оборудования.

При увеличении напряжения линии количество изоляторов в гирлянде добавляется. Например, для ВЛ 35 кВ их достаточно установить 2 или 3, а на 110 кВ - уже потребуется 6÷7.

Стеклянные изоляторы

Эти конструкции обладают рядом преимуществ перед фарфоровыми:

    отсутствием внутренних дефектов изоляционного материала, влияющих на образование токов утечек;

    повышенной прочностью к усилиям скручивания;

    прозрачностью конструкции, позволяющей визуально оценивать состояние и выполнять контроль угла поляризации светового потока;

    отсутствием признаков старения;

    автоматизацией производства и плавки.

Недостатками стеклянных изоляторов являются:

    слабая антивандалная устойчивость;

    низкая прочность на действие ударных нагрузок;

    возможность повреждений при транспортировке и монтаже от механических усилий.

Полимерные изоляторы

Они обладают повышенной механической прочностью и уменьшенным до 90% весом по сравнению с керамическими и стеклянными аналогами. К дополнительным преимуществам относятся:

    простота монтажа;

    бо́льшая стойкость к загрязнениям из атмосферы, которая, однако, не исключает необходимость периодической очистки их поверхности;

    гидрофобность;

    хорошая восприимчивость перенапряжений;

    повышенная вандалоустойчивость.

Долговечность полимерных материалов тоже зависит от условий эксплуатации. В воздушной среде с повышенными загрязнениями от промышленных предприятий у полимеров могут проявиться явления «хрупкого излома», заключающиеся в постепенном изменении свойств внутренней структуры под воздействием химических реакций от загрязняющих веществ и атмосферной влаги, протекающих в комплексе с электрическими процессами.

При расстреле вандалами изоляторов из полимера дробью или пулями обычно не происходит полного разрушения материала, как у стекла. Чаще всего дробинка или пуля пролетает навылет или застревает в корпусе юбки. Но диэлектрические свойства при этом все равно занижаются и поврежденные элементы в гирлянде требуют замены.

Поэтому подобное оборудование необходимо периодически осматривать методами визуального контроля. А выявить подобные повреждения без оптических приборов практически невозможно.

Арматура воздушных линий

Для крепления изоляторов на опоре ВЛ, сборки их в гирлянды и монтажа к ним токонесущих проводов выпускаются специальные крепежные элементы, которые принято называть арматурой линии.


По выполняемым задачам арматуру классифицируют на следующие группы:

    сцепную, предназначенную для соединения подвесных элементов различными способами;

    натяжную, служащую для крепления натяжных зажимов к проводам и гирляндам анкерных опор;

    поддерживающую, выполняющую удержание креплений проводов, шлейфов и узлов монтажа экранов;

    защитную, предназначенную для сохранения работоспособности оборудования ВЛ при воздействии на нее атмосферных разрядов и механических колебаний;

    соединительную, состоящую из овальных соединителей и термитных патронов;

    контактную;

    спиральную;

    установки штыревых изоляторов;

    монтажа СИП проводов.

Каждая из перечисленных групп имеет широкий ассортимент деталей и требует более пристального изучения. Например, в состав только защитной арматуры входят:

    рога защитные;

    кольца и экраны;

    разрядники;

    гасители вибраций.

Защитные рога создают искровой промежуток, отводят появляющуюся электрическую дугу при возникновении перекрытия изоляции и таким способом защищают оборудование ВЛ.

Кольца и экраны отводят дугу от поверхности изолятора, улучшают распределение напряжения по всей площади гирлянды.

Разрядники защищают оборудование от волн перенапряжения, возникающих при ударе молний. Они могут применяться на основе трубчатых конструкций из винипластовых или фибробакелитовых трубок с электродами либо быть изготовлены вентильными элементами.

Гасители вибраций работают на тросах и проводах, предотвращают повреждения от усталостных напряжений, создаваемых вибрациями и колебаниями.

Заземляющие устройства воздушных линий

Необходимость повторного заземления опор ВЛ вызвана требованиями безопасной работы при возникновении аварийных режимов и грозовых перенапряжениях. Сопротивление контура заземляющего устройства не должно превышать 30 Ом.

У металлических опор все крепежные элементы и арматура должны присоединяться к PEN проводнику, а у железобетонных объединенный ноль связывает собой все подкосы и арматуру стоек.

На опорах из дерева, металла и железобетона штыри и крюки при монтаже СИП с несущим изолированным проводником не заземляют, за исключением случаев необходимости выполнения повторных заземлений для защит от перенапряжений.


Крюки и штыри, смонтированные на опоре, соединяют с контуром заземления сваркой, используя стальную проволоку или прут не тоньше 6 мм по диаметру с обязательным наличием антикоррозионного покрытия.

На железобетонных опорах для заземляющего спуска применяют металлическую арматуру. Все контактные соединения заземляющих проводников сваривают или зажимают в специальном болтовом креплении.

Опоры воздушных линий электропередач с напряжением 330 кВ и выше не заземляют из-за сложности реализации технических решений для обеспечения безопасной величины напряжений прикосновения и шага. Защитные функции заземления в этом случае возложены на быстродействующие защиты линии.

Кабельная линия (КЛ) - линия для передачи электроэнергии, состоящая из одно­го или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис. 1.29). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесооб­разно по экономическим, архитектурно-планировочным показателям и другими требо­ваниям. Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на про­мышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства

Достоинства и преимущества кабельных линий по сравнению с воздушными: неподверженность атмосферным воз­действиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреж­даемость, компактность линии и возможность широкого развития электроснабжения по­требителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и в 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.

Рис. 1.29. Способы прокладки кабелей и кабельные сооружения: а - земляная траншея; б-_коллектора;в-туннель; г-канал; д - эстакада; е - блок

В состав КЛ входят: кабель, оборудования для соединения и секционирования участков кабеля и присоединения концов кабелей к аппаратуре и шинам РУ (кабельная арматура – главным образом различные муфты), строитель­ные конструкции, элементы крепления, а также аппаратуры подпитки маслом или газом (для масло- и газонаполненных кабелей).

Классификация кабельных линий в основном соответствует классификации входящих в нее кабелей. Основными признаками являются:

Род тока;

Номинальное напряжение;

Число токоведущих элементов;

Электроизоляционный материал;

Характер пропитки и способ увеличения электрической прочности бумажной изоляции;

Материал оболочек.

(Данные признаки охватывают лишь кабели, работающие в условиях естественного охлаждения. Имеются кабели с форсированным охлаждением водой или маслом, а также криогенные кабели.)

Кабель - готовое заводское изделие, состоящее из изолированных токо-проводящих жил, заключенных в защитную герметичную оболочку и броню, пре­дохраняющие их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5-2000 мм 2 . Жилы сечением до 16 мм 2 - однопроволочные, свыше - многопроволоч­ные. По форме сечения жилы круглые, сегментные или секторные.

Кабели напряжением до 1 кВ выполняются, как правило, четырехжильными, напряжением 6-35 кВ - трехжильными, а напряжением 110-220 кВ - одножильными.



Защитные оболочки делаются из свинца, алюминия, резины и полихлорви­нила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создает более равномерное электрическое поле и улуч­шает отвод тепла. Выравнивание электрического поля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводя­щей бумагой.

В кабелях на напряжение 1-35 кВ для повышения электрической прочно­сти между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля, выполненная из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной пряжи, пропитанной битумом и покрытой меловым составом.

В кабелях напряжением 110кВ и выше для повышения электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).

Кабельные линии высокого напряжения

Кабельные линии с вязкой пропиткой при напряжениях свыше 35 кВ не применяются. Это связано с тем, что в изоляции готового кабеля всегда остаются воздушные включения. Их наличие существенно снижает электрическую прочность изоляции. Воздушные включения, в зависимости от места их нахождения, подвергаются ионизации со всеми вытекающими отсюда последствиями, либо их отрицательная роль проявляется в связи с протеканием тепловых процессов. Кабель периодически подвергается нагреванию и охлаждению в связи с изменением передаваемой мощности. Увеличение и снижение объема кабеля приводит к увеличению воздушных включений, миграции их к токопроводящей жиле и последующему пробою.

Устранить указанные явления можно двумя способами:

Исключить воздушные включения;

Повысить давление в воздушных (газовых) включениях.

Первый способ используется в маслонаполненных кабелях (МНК) низкого давления, имеющих каналы для масла внутри жилы, второй – в МНК высокого давления, прокладываемых в стальных трубопроводах.

Маслонаполненные кабели низкого давления .

МНК низкого давления (до 0,05 МПа) выпускают одножильными, Они серийно изготавливаются на напряжение 110, 150 и 220 кВ и имеют медные жилы сечением 120-800 в свинцовых или алюминиевых оболочках.

В зависимости от условий прокладки – в земле (в траншеях), когда кабель не подвергается растягивающим условиям и защищен от механических повреждений; или под водой, в болотистой местности и там, где он подвергается растягивающим усилиям, - применяются различные тины маслонаполненного кабеля.

Маслонаполненные кабели высокого давления .

Маслонаполненные кабели (МНК) высокого давления изготовляются на напряжение 110, 220, 330, 380 и 500 Кв.

Жилы такого кабеля выпускают:

а) во временной свинцовой оболочке, предохраняющей изоляцию от увлажнения и повреждения при транспортировке и удаляемой при монтаже;

б) без оболочки. В этом случае жилы кабеля доставляются на трассу в герметичном контейнере, заполненном маслом.

При монтаже изолированные и экранированные медные жилы сечением 120-700 с наложенными на них полукруглыми проволоками скольжения затягиваются в стальные трубы. При = 500 кВ наружный диаметр трубы составляет 273 мм при толщине стенки 10 мм.

Для таких кабельных линий давление масла составляет 1,08 – 1,57 МПа. За счет высокого давления повышается электрическая прочность. Трубы являются хорошей защитой от механических повреждений.

Трубопроводы сваривают из отрезков длиной по 12 м. Компенсация изменения объема масла при изменении температуры и поддержание давления масла в трубопроводе осуществляется автоматически подпитывающим устройством, которое располагается на одном конце линии (при небольших длинах) или на обоих(при больших длинах).

Существуют также маслонаполненные кабели среднего давления, кабели с полимерными материалами в качестве изоляции и т.д.

В марке, обозначении кабеля указываются сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжильных кабелей напряжением до 1 кВ сечение четвертой («нулевой») жилы меньше, чем фазной. Например кабель ВПГ-1- 3x35+1x25 - кабель с тремя медными жилами сече­нием по 35 мм 2 и четвертой сечением 25 мм", полиэтиленовой (П) изоляцией на 1 кВ оболочкой из полихлорвинила (В), небронированный, без наружного покрова (Г)"_ для прокладки внутри помещений, в каналах, туннелях, при отсутствии ме­ханических воздействий на кабель; кабель АОСБ-35-3x70 - кабель с тремя алюминиевыми (А) жилами по 70 мм 2 , с изоляцией на 35 кВ, с отдельно освинцо­ванными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом - для прокладки в земляной траншее;

ОСБ-35__3x70 - такой же кабель, но с медными жилами.

Конструкции некоторых кабелей представлены на рис. 1.30. На рис. 1.30, а, б даны силовые кабели напряжением до 10 кВ.

Четырехжильный кабель напряжением 380 В (см. рис. 1.30, а) содержит элементы: 1 - токопроводящие фазные жилы; 2 - бумажная фазная и поясная изоляция; 3 - защитная оболочка; 4 - стальная броня; 5 - защитный покров; 6 - бумажный наполнитель; 7 - нулевая жила.

Трехжилъный кабель с бумажной изоляцией напряжением 10 кВ (рис. 1.30, б) содержит элементы: 1 - токоведущие жилы; 2 - фазная изоляция; 3 - общая поясная изоляция; 4 - защитная оболочка; 5 - подушка под броней; 6 - сталь­ная броня; 7 - защитный покров; 8 - заполнитель.

Трехжилъный кабель напряжением 35 кВ изображен на рис. 1.30, в. В него входят: 1 - круглые токопроводящие жилы; 2 - полупроводящие экраны; 3 - фазная изоляция; 4 - свинцовая оболочка; 5 - подушка; 6 - заполнитель из ка­бельной пряжи; 7 - стальная броня; 8 - защитный покров.

На рис. 1.30, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110-220 кВ. Давление масла предотвращает появление воздуха и его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной ленты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании ка­беля в трубе. Снаружи стальная труба защищена покровом 5 .

Широко распространены кабели в полихлорвиниловой изоляции, произво­димые трех-, четырех- и пятижильными (1.30, е) или одножильными (рис. 1.30, д). Более подробные данные о различных типах и марках кабелей, областях их применения приведены в.

Кабели изготавливаются отрезками ограниченной длины в зависимости от напряжения и сечения. При прокладке отрезки соединяют посредством соедини­тельных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.

При прокладке в земле кабелей 0,38-10 кВ для защиты от коррозии и механи­ческих повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи.

Надежность работы всей кабельной линии во многом определяется надежностью ее арматуры, т. е муфт различного типа и назначения.

Кабельные муфты высокого напряжения классифицируются по трем основным признакам.

По назначению муфты делятся на три основные группы –концевые, соединительные и стопорные, причем среди концевых выделяют открытые муфты и кабельные вводы в трансформаторы и высоковольтные аппараты, а среди соединительных – собственно соединительные, ответвительные и соединительно - разветвительные муфты.

По виду электрической изоляции муфты делятся на две группы: со слоистой и монолитной изоляцией. Слоистая изоляция выполняется путем намотки лент из кабельной бумаги, синтетической пленки или их композиций и заполняется той или иной средой (маслом, газом) под избыточным давлением или без него. Монолитная изоляция образуется методом экструзии или спекания изолирующих материалов в подогреваемых пресс-формах.

По роду тока различают муфты для кабелей переменного, постоянного и импульсного тока. Муфты кабелей переменного тока могут выполняться однофазными и трехфазными.

Конструкция муфт силовых кабелей высокого напряжения в первую очередь определяется типом кабеля, для которого они предназначены.

На концах кабелей применяют концевые муфты или концевые заделки.

Рис. 1.30. Силовые кабели: а - четырехжильный напряжением 380 В;

б- трсхжильный с бумажной изоляцией напряжением 10 кВ; в - трехжильный напряжением 35 кВ; г - маслонаполненный высокого давления; д - одножильный с пластмассовой изоляцией

На рис. 1.31а, показано соединение трехжильного низковольтного кабеля 2 в чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены зажимом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битуминоз­ными составами, кабели 20-35 кВ - маслонаполненными . Для кабелей с пласт­массовой изоляцией применяют соединительные муфты из термоусаживаемых изоля­ционных трубок, число которых соответствует числу фаз, и одной термоусаживаемой трубки для нулевой жилы, усаживаемых в герметизированную муфту (рис. 1.31, б) .

Рис. 1.31. Соединительные муфты для трех- и четырехжильных кабелей напряже-- нием до 1 кВ: а - чугунная; б- из термоусаживаемых изоляционных трубок

На рис. 1.32, а приведена мастиконаполненая трехфазная муфта наружной установки с фарфоровыми изоляторами для кабелей напряжением 10 кВ. Для трехжильных кабелей с пластмассовой изоляцией применяется концевая муфта, представленная на рис. 1.32, б. Она состоит из термоусаживаемой перчатки 1, стойкой к воздейст­вию окружающей среды, и полупроводящих термоусаживаемых трубок 2, с по­мощью которых на конце трехжильного кабеля создаются три одножильных ка­беля. На отдельные жилы надеваются изоляционные термоусаживаемые трубки 3. На них монтируется нужное количество термоусаживаемых изоляторов 4.


Рис. 1.32. Концевые муфты для трехжильных кабелей напряжением 10 кВ: а - наружной установки с фарфоровыми изоляторами; б - наружной установки с пластмассовой изоляцией; в - внутренней установки с сухой разделкой

Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних поме­щениях применяют сухую разделку (рис. 1.32, е). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекры­вающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения от­ставания и разматывания фиксируют бандажами из шпагата 6.

Способ прокладки кабелей определяется условиями трассы линии. Кабели про­кладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекто­рах, по кабельным эстакадам, а так же по перекрытиям зданий (рис. 1.29).

Наиболее часто на территории городов, промышленных предприятиях ка­бели прокладывают в земляных траншеях . Для предотвращения по­вреждений из-за прогибов на дне траншеи создают мягкую подушку из слоя про­сеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м, между кабелями 20-35 кВ - 0,25 м. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механиче­ских повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает воз­можность ремонта без вскрытия полотна дороги. Прокладка в траншеях - наи­менее затратный способ кабельной канализации ЭЭ.

В местах прокладки большого количества кабелей агрессивный грунт и блуждаю­щие токи ограничивают возможность их прокладки в земле. Поэтому наряду с другими подземными коммуникациями используют специальные сооружения: коллекторы, тунне­ли, каналы, блоки и эстакады .

Коллектор (рис. 1.29, б) служит для совместного размеще­ния в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопро­вода по городским магистралям и на территории крупных предприятий.

При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции применяют прокладку в туннелях

(рис. 1.29, в). При этом улучшаются условия экс­плуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализаци­онных труб большого диаметра, емкость туннеля - от 20 до 50 кабелей.

При меньшем числе кабелей применяют кабельные каналы (рис. 1.29, г), за­крытые землей или выходящие на уровень поверхности земли.

Кабельные эстака­ды и галереи (рис. 1.29, д) используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно про­кладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам ка­бели прокладываются по кабельным кронштейнам.

В крупных городах и на больших предприятиях кабели иногда проклады­ваются в блоках (рис. 1.29, е), представляющих асбестоцементные трубы, стыки, которые заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.

В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.

Сложные технические линии электропередач (ЛЭП), служат для доставки электроэнергии на большие расстояния. В масштабах государства они являются стратегически важными объектами, которые проектируются и возводятся в соответствии с СНиП и ПУЭ.

Классифицируются эти линейные участки на кабельные и воздушные ЛЭП, монтаж и прокладка которых требуют обязательного соблюдения расчетных условий и установки специальных конструкций.

Воздушные линии электропередачи

Рис.1 Воздушные высоковольтные ЛЭП

Наиболее распространенными считаются воздушные линии, прокладка которых происходит на открытом воздухе с помощью высоковольтных столбов, на которые провода закрепляются с помощью специальной арматуры (изоляторов и кронштейнов). Чаще всего – это стойки СК .

В состав ВЛ электропередач входят:

  • опоры для различных напряжений;
  • оголенные провода из алюминия или меди;
  • траверсы, обеспечивающие необходимое расстояние, исключающее возможность соприкосновения проводов с элементами опоры;
  • изоляторы;
  • контур заземления;
  • разрядники и молниеотвод.

Минимальная точка провисания ВЛ составляет: 5÷7 метров в ненаселенной местности и 6÷8 метров в населенных пунктах.

В качестве высоковольтных столбов используются:

  • металлические конструкции, которые эффективно используются в любых климатических зонах и с разными нагрузками. Они отличаются достаточной прочностью, надежностью и долговечностью. Представляют собой металлический каркас, элементы которого соединены с помощью болтовых соединений, которые облегчают доставку и монтаж опор на местах установки;
  • железобетонные опоры, являющиеся самым простым видом конструкций, которые имеют хорошие прочностные характеристики, просты в установке и проведении монтажа на них ВЛ. К недостаткам установки бетонных опор , относятся – определенное влияние на них ветровых нагрузок и характеристик грунтов;
  • деревянные опоры, которые являются самыми малозатратными в производстве и обладают отличными диэлектрическими характеристиками. Малый вес конструкций из дерева позволяет быстро доставлять их к месту монтажа и легко устанавливать. Недостатком этих опор ЛЭП являются невысокая механическая прочность, позволяющая устанавливать их только с определенной нагрузкой и подверженность процессам биологического разрушения (гниения материала).

Использование той или иной конструкции обуславливается величиной напряжения электрической сети. Полезным будет навык определять напряжение ЛЭП на внешнему виду .

Классифицируются ВЛ:

  1. по току – постоянному или переменному;
  2. по номиналам напряжений – для постоянного тока с напряжением 400 киловольт и переменного - 0.4÷1150 киловольт.

Кабельные ЛЭП

Рис.2 Кабельные линии подземного типа

В отличие от воздушных линий, кабельные имеют изоляцию и поэтому они более дорогие и надежные. Применяют этот вид проводов в местах, где монтаж воздушных линий невозможен – в городах и населенных пунктах с плотной застройкой, на территориях производственных предприятий.

Классифицируются кабельные ЛЭП:

  1. по напряжению – точно также как и воздушные линии;
  2. по типу изоляции – жидкостному и твердому. Первый тип – это нефтяное масло, а второй – оплетка кабеля, состоящая из полимеров, резины и промасленной бумаги.

Отличительными их особенностями является способ прокладки:

  • подземный;
  • подводный;
  • по сооружениям, которые защищают кабеля от атмосферных воздействий и обеспечивают высокую степень безопасности при эксплуатации.

Рис.3 Прокладка подводной ЛЭП

В отличие от первых двух способов прокладки кабельных ЛЭП, вариант «по сооружению» предусматривает создание:

  • кабельных туннелей, в которых силовые кабеля укладываются на специальные опорные конструкции, позволяющие проводить монтажные работы и обслуживание линий;
  • кабельных каналов, которые представляют собой заглубленные сооружения под полом зданий, в которых укладка кабельных линий происходит в земле;
  • кабельных шахт – вертикальных коридоров, имеющих прямоугольное сечение, которые обеспечивают возможность доступа к ЛЭП;
  • кабельных этажей, которые представляют собой сухое, техническое пространство с высотой около 1,8 м;
  • кабельных блоков, состоящих из труб и колодцев;
  • открытого типа эстакад - для горизонтальной или наклонной прокладки кабелей;
  • камер, используемых для укладки соединительных муфт участков ЛЭП;
  • галерей – тех же эстакад, только закрытого типа.

Заключение

Несмотря на то, что кабельные и воздушные линии электропередач используются повсеместно, оба варианта имеют свои особенности, которые должны быть учтены в проектной документации, определяющей

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока - не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования. Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами. Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа - анкерным участком.

Провода, подвешиваемые на изоляторах (А, - длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /. Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ - 7 м; 220 кВ - 8 м; до зданий или сооружений до 35 кВ - 3 м; 110 кВ - 4 м; 220 кВ - 5 м. Длина пролета / определяется экономическими условиями. Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ - 150…200 м; 220 кВ - до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 -35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле


где U - линии, кВ; - наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь - толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле


Стойку опоры выполняют составной: верхнюю часть (собственно стойку) - из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) - из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 - 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком - подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

По сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные - более энергозатратны). Основное преимущество железобетонных опор - уменьшение расхода стали на 40…75%, недостаток - большая масса. По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления.

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Провода воздушных линий выполняют неизолированными, состоящими из одной или нескольких свитых проволок. Провода из одной проволоки, называемые однопроволочными (их изготавливают сечением от 1 до 10 мм2), имеют меньшую прочность и применяются только на ВЛ напряжением до 1 кВ. Многопроволочные провода, свитые из нескольких проволок, применяются на ВЛ всех напряжений.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм. Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность. Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Многопроволочные провода, скрученные из нескольких проволок, обладают большой гибкостью; такие провода могут выполняться любым сечением (их изготавливают сечением от 1,0 до 500 мм2).

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси. Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность. Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС - материал провода;
  • цифрами - сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС - из стального сердечника и алюминиевых проволок;
  • ПС - из стальных проволок;
  • ПСТ - из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 - сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 - однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Стальные тросы, применяемые на ВЛ в качестве грозозащитных, изготавливают из оцинкованной проволоки; их сечение должно быть не менее 25 мм2. На ВЛ напряжением 35 кВ применяют тросы сечением 35 мм2; на линиях ПО кВ - 50 мм2; на линиях 220 кВ и выше -70 мм2.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше - по условиям потерь на корону. На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Такие колебания провода с амплитудой 2…35 мм, длиной волны 1…20 м и частотой 5…60 Гц называются вибрацией.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.



Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 - 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 -35 кВ применяют штыревые изоляторы.

Проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ. При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода. Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

При уменьшении температуры воздуха от +40 до 40 °С и увеличении скорости ветра от 1 до 20 м/с тепловые потери изменяются от 50 до 1000 Вт/м. При положительных температурах окружающего воздуха (0…40 °С) и незначительных скоростях ветра (1 …5 м/с) тепловые потери составляют 75…200 Вт/м.

Для определения воздействия перегрузки на увеличение потерь сначала определяется


где RQ - сопротивление провода при температуре 02, Ом; R0] - сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с - коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличение сопротивления провода по сравнению с сопротивлением, соответствующим расчетной нагрузке, возможно при перегрузке 30 % на 12 %, а при перегрузке 50 % - на 16 %

Увеличения потери AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

С начала века получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП).

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем - изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечения проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий. Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь и мощности за счет уменьшения реактивного сопротивления. Параметры прямой последовательности линий:

  • АСБ95 - R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 - соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 - 0,26 и 0,078 Ом/км;
  • АС120 - 0,27 и 0,29 Ом/км.

Эффект от снижения потерь при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности - 18 %.

Поделиться: